Mecanização das Vinhas na Região Demarcada do Douro

O passado, o presente e o futuro.

Fernando A. Santos – UTAD

José Afonso Azevedo – CEVD / DRATM

Introdução

A mecanização das vinhas da RDD tem levado os viticultores a procurar novas formas de instalação que permitam a introdução de unidades de tracção e alfaias tornando, assim, possível realização mecanizada das diferentes operações culturais.

A forma tradicional de instalação utilizada pelos viticultores consistiu na construção de muros ao longo da encosta com o objectivo de atenuar o seu declive inicial, sendo a plantação efectuada com alinhamentos segundo as curvas de nível e a condução em bardos. Estas vinhas, embora constituam um importante património vitícola, têm vindo a ser abandonadas, pois dependem da disponibilidade de mão-de-obra, factor cada vez mais escasso e mais oneroso. Mais recentemente as vinhas tradicionais têm vindo a ser reconvertidas, quer parcialmente (reconversão parcial), pelo arrasamento das parcelas, mantendo os muros, ou totalmente (reconversão total), em que a vinha fica em patamares ou segundo o maior declive.

Em relação à situação actual, mesmo depois do apoio dos vários programas de ajuda à reconversão, constata-se que ainda mais de 50 % das vinhas se encontram implantada em sistemas tradicionais, não reestruturados e, apenas 22 % da área, está implantada segundo sistemas mecanizáveis (patamares e vinha ao alto), o que justifica a manutenção do esforço financeiro e técnico à sua reconversão.

1- Programas de apoio à reconversão e mecanização das vinhas

Os modelos para reconversão das vinhas surgiram a partir dos anos 60, embora só se tenham efectivamente iniciado a partir da década de 80, com o surgimento de programas de ajuda ao investimento. Após cerca de 20 anos de reconversão pode-se afirmar que, a quase totalidade das vinhas reestruturadas existentes na RDD, foram inseridas nos diversos programas de apoio à reconversão suportados pelo estado, tendo os viticultores evidenciado muito interesse, o que está bem patente na crescente adesão aos programas de reconversão como se apresenta no quadro 1.

Quadro 1- Área reconvertida nos diferentes programas de reconversão

PROGRAMA	PERÍODO	ÁREA (ha)
PDRITM	(1984 a 1988)	2.838,0
Programa Operacional	(1991 a 1993)	1.892,2
PAMAF	(1994 a 1999)	2.807,0
Vitis *	(2000 a 2002)	3.996,9

^{*} Os dados do programa VITIS referem-se a candidaturas em execução

Esta realidade tem a haver com o facto dos custos de reconversão da vinha na RDD serem, geralmente, muito elevados, atingindo actualmente cerca de 25.000 €/ha. Por outro lado, os viticultores que têm vinhas tradicionais sentem, cada vez mais, a necessidade de proceder à sua reconversão como forma de as viabilizar face à dificuldade na obtenção de mão-de-obra.

Através da análise dos dados do Ficheiro Vitícola, torna-se evidente que a área de vinha não reconvertida é ainda significativa (quadro 2), pelo que será determinante para o futuro desta região a manutenção de medidas de apoio à reconversão. Dos dados observados constata-se que existe mais de 54 % de área ainda instalada segundo sistemas tradicionais, correspondendo a área reconvertida (patamares e vinha-ao-alto) a cerca de 22% da sua área total.

Quadro 2- Número e área de parcelas nos vários tipos de instalação nas sub-regiões do Douro

TIPO DE INSTALAÇÃO	Baixo	Corgo	Cima (Corgo	Douro Superior					
	Nº parcelas	área	Nº parcelas	área	Nº parcelas	área				
Terraços Pré-Filoxera	1.566	419,45	4.810	897,59	1.466	419,45				
Terraços Pós-Filoxera	49.139	10.614,23	37.955	10.082,57	6.247	1.872,73				
Patamares	1.205	1.774,01	2.466	4.058,40	948	1.622,74				
Vinha-ao-alto	872	501,06	2.744	1.447,62	526	537,67				
Sem armação	1.307	315,20	9.294	3.009,49	18.619	7.506,23				
Outras armações	567	41,13	973	164,04	153	86,59				
Total	54.656	13.665,08	58.242	19.659,71	27.959	12.045,41				

Fonte: IVV/DCV 2003

Acresce que a maior parte destas vinhas tradicionais, não reconstituídas, correspondem a parcelas de área compreendida entre 0,1 e 1,0 ha e pertencem a 77 % dos viticultores, donde se torna imperioso proceder à sua reestruturação pois, só assim, a mecanização será técnica e economicamente viável; são estas explorações que, por incapacidade financeira, têm os mais baixos índices de mecanização.

É também de realçar o facto da maior parte da área de vinha instalada segundo os sistemas tradicionais situar-se no Baixo Corgo e Cima Corgo, pois é nestas sub-regiões que se encontram as áreas de maior interesse para a viticultura Duriense uma vez que são as que mais contribuem para a produção total da região e, simultaneamente, onde se encontram os vinhedos mais antigos e de maior importância no que respeita à imagem de marca da região. É também nestas duas sub-regiões que se encontram a maior percentagem de vinhedos implantados em condições de elevada inclinação e, portanto, com maior dificuldade de cultivo.

Será interessante observar a distribuição das áreas de vinha segundo os seus declives, pois estes dão uma ideia da dificuldade da sua instalação e, consequentemente, da sua reconversão; é no Baixo Corgo e Cima Corgo, que se concentram as situações mais difíceis, havendo no primeiro caso 56% das parcelas com inclinação superior a 30% e, no segundo, apenas cerca de 35% das parcelas estão nesta situação; no Douro Superior, somente 15% das parcelas é que têm inclinação superior a 30%.

Quadro 3- Número e área das parcelas, segundo a inclinação, nas sub-regiões do Douro

Quadro 3- Número e área das parcelas, segundo a inclinação, nas sub-regiões do Douro

Declive(%)	Baixo Co	orgo	Cima C	Corgo	Douro Superior					
	Nº parcelas	área	N° parcelas	Área	Nº parcelas	área				
< 5%	886	151,11	1.381	258,83	1.785	795,48				
5 - 15%	7.159	1.562,82	14.333	3.671,16	11.360	4.551,83				
15-30%	15.825	3.683,26	22.294	6.509,06	10.745	4.156,54				
30-45%	18.437	5.259,37	14.150	5.795,99	3.496	2.183,17				
> 45%	12.349	3.008,52	6.084	3.424,67	573	358,39				
Totais	54.656	13.665,08	58.242	19.659,71	27.959	12.045,41				

Fonte: IVV/DCV 2003

Quanto à reestruturação propriamente dita, ela tem sido realizada quer por reconstituição quer por transferência, tendo em vista a obtenção de formas de instalação possíveis de serem mecanizadas. As reconstituições são geralmente efectuadas com uma modificação profunda do perfil do terreno (reconversão total), o que conduz à instalação da vinha em patamares ou segundo o maior declive (vinha-ao-alto). Nos últimos anos, a opção de se fazer uma reconversão menos profunda, mantendo as características do sistema tradicional, ou seja, os muros de suporte bem como as elevadas densidades de plantação, tem vindo a ser uma opção cada vez mais frequente (reconversão parcial). Esta reconversão é uma solução a considerar, pois começam a aparecer equipamentos adaptados e com custos mais acessíveis, que poderão ajudar a preservar as características das vinhas tradicionais do Douro, condição fundamental para manter uma economia baseada no turismo.

A existência de qualquer medida de apoio à reconversão, seja qual for a solução preconizada, exigirá um acompanhamento técnico dos trabalhos de reconversão, permitindo assim a garantia da realização de boas práticas, assim como a adequação do sistema de instalação às necessidades de cada situação.

3- A mecanização da cultura da vinha nas diferentes formas de instalação

A mecanização da cultura da vinha nas diferentes formas de instalação começou a ser estudada pela UTAD, na década de 80, com a análise do comportamento à tracção do tractor de rastos, seguindo-se, depois, no âmbito do PDRITM (Programa de Desenvolvimento Regional Integrado de Trás-os-Montes), um projecto, dentro do mesmo âmbito, com tractores de rodas.

Mais recentemente (1997 - 2000) a UTAD e o CEVD, no âmbito do Programa de Apoio à Modernização da Agricultura (PAMAF), efectuou um estudo intitulado PAMAF 6121 - "Mecanização das vinhas tradicionais da RDD", com o objectivo de estudar os equipamentos possíveis de serem utilizados nas vinhas tradicionais.

Actualmente encontra-se em fase de execução um projecto AGRO, que termina em 2004, intitulado "Mecanização das vinhas da RDD", cujos objectivos principais são a avaliação das prestações dos tractores, a instalação de um campo de demonstração com vários tipos de embardamento e um inquérito às explorações, para conhecer com maior objectividade o nível de mecanização, as suas principais limitações etc.; o primeiro destes objectivos será abordado no ponto seguinte.

Para além destes estudos relativos ao comportamento das unidades de tracção foram efectuados outros, nomeadamente no âmbito dos tratamentos fitossanitários, controlo de infestantes, etc.

4- Avaliação das prestações dos tractores existentes na RDD.

A mecanização das vinhas não se esgota na escolha das unidades de tracção e equipamentos, técnica e economicamente melhor adaptados a cada situação, mas é necessário manter a sua funcionalidade nas melhores condições. Assim, e com este objectivo, está-se a realizar, no âmbito do projecto AGRO 163 "Mecanização das vinhas da RDD", vários ensaios de avaliação das características dos motores, nomeadamente a determinação das suas curvas características.

4.1- Material e métodos

Nestes ensaios é utilizado um freio eléctrico, marca Froment, modelo XT - 200, ligado por uma placa de aquisição de dados a um computador que permite gravar o regime de funcionamento da TDF, a potência e o binário desenvolvido pelo motor; este freio está montado num atrelado móvel o que permite deslocá-lo facilmente.

Figura 1- Freio eléctrico utilizado nos ensaios

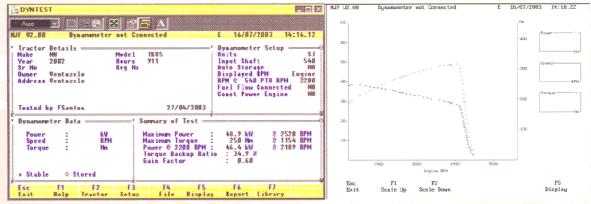
a- travão de estacionamento; b- estabilizadores posteriores; c- roda estabilizadora ajustável em altura; d- tomada de reboque; e- ponto de reboque; f- cobertura metálica do freio; g, h- cortinas laterais; i- cortina posterior; j- lâmpada indicadora de funcionamento Fonte: Manual de instruções do "Froment Tractor Test Center". (1991)

A metodologia utilizada nestes ensaios consta, basicamente, da ligação do freio ao tractor e, após o aquecimento do motor, pô-lo a funcionar ao regime máximo, começando-se, então, a aumentar progressivamente a sua carga; esta é introduzida através de uma consola (figura 2) que indica também a potência desenvolvida e o regime do motor.

Figura 2- Consola de comando do freio

a- indicador digital do regime da TDF; b- selector do regime da TDF (540 ou 1000 rpm); c- indicador digital da potência fornecida; dselector das unidades de medida da potência (hp cv ou kW); e- botão do reóstato (aplicação de cargas segundo grandes variações travagem); f- botão do reóstato (aplicação de cargas segundo variações menores - travagem).

Fonte: Froment Tractor Test Center. (1991).


Os dados relativos à potência e binário, em função do regime motor, assim como a sua representação gráfica são gravados no computador portátil. O "display" apresentado no monitor, para além da informação relativa ao tractor (Tractor Details) e das variáveis introduzidas no programa e que serão utilizadas pelo dinamómetro (Dynamometer Setup), apresenta um resumo dos dados medidos e determinados (Summary of Test). Os dados relativos ao dinamómetro (Dynamometer Data) apenas são apresentados durante o ensaio o que permite conhecer os valores da potência, regime e binário em cada momento.

Os dados gravados no ficheiro tem a extensão "DAT" o que permite a sua importação por uma folha de cálculo para posterior análise; o regime da TDF é convertido em regime motor sendo a potência expressa em kW e o binário em daNm, o que facilita a sua interpretação gráfica.

4.2- Resultados

Os resultados obtidos com os diferentes tractores têm, como objectivo, a análise da performance do motor do tractor, o que permite, no caso de se identificarem eventuais anomalias, aconselhar o viticultor sobre os procedimentos a seguir.

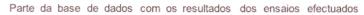
Os dados determinados (anexo 1) e os referentes aos tractores novos (anexo 2) são introduzidos em folhas de cálculo, em que cada linha representa um tractor e as colunas, as variáveis, o que permite uma comparação entre si (tractores da mesma marca e modelo) e com os dados dos tractores em novo; esta comparação, juntamente com a evolução das curvas, permite fazer um diagnóstico da "performance" do motor ensaiado.

5- Conclusões

A existência de uma área muito significativa de vinha potencialmente mecanizável justifica a continuação de programas de apoio à sua reconversão e a continuação de estudos tendentes à melhoria do nível de mecanização actualmente já existente.

Os estudos e programas efectuados nos últimos vinte anos permitiram, de forma genérica, definir estratégias de mecanização para os diferentes modos de instalação das vinhas devendo-se, no entanto, para a definição de soluções específicas, proceder-se a uma análise mais rigorosa de cada situação, o que implica a necessidade de um acompanhamento técnico e meios financeiros.

A adequação dos equipamentos, técnica e economicamente mais indicados para cada exploração, requer a manutenção das suas prestações pelo que a verificação do seu estado de funcionalidade deve ser assegurado. Assim, e com este objectivo, o projecto AGRO nº 163 "Mecanização das Vinhas da RDD" tem avaliado as prestações das unidades de tracção de forma a corrigir eventuais falhas.


Tem-se verificado no decurso deste projecto uma enorme falta de informação sobre a manutenção e correcta utilização dos tractores, o que justifica um trabalho exaustivo de extensão.

Definição dos parâmetros referidos:

Reserva de binário (RB) é a relação entre a diferença do binário máximo e do binário à potência máxima, relativamente ao binário correspondente à potência máxima.

Reserva de regime (speed decrease ratio - SDR) é a relação entre a diferença do regime nominal com o regime do binário máximo relativamente ao regime nominal.

Factor de recuperação (gain factor) indica o grau de "prontidão" da resposta do tractor às variações de carga. Grau de irregularidade do regulador ou zona de carga parcial indica a zona em que o regulador corrige o débito da bomba injectora, ou seja a variação de regime desde o funcionamento do motor a carga nula até à situação de carga máxima.

Marca	Modelo		rgM	Ano	Horas	- 5						Mt	t (reg.nom.)		M	Mt (TDF-540)		Mt (bin.max.)			R.B.	SDR	GF	GIR
		SL	(540)									(rpm)	(kW)	(daNm)	(rpm)	(kW)	(daNm)	(rpm)	(877)	(daNm)	(%)	(%)		(%
António Carraro	Tigrone 5500	4RM	2200	1987	1500	2356	28,7	39,0	2761	5,1	1,76	2119	19,8	8,93	2101	19,2	8,37	1439	1,6	10,40	16,5	47,9	0,34	23,
Case	2120	4RM	2100	1996	1687	2115	40,4	55.0	2997	4.5	1,71	2351	26,1	10,61	2088	25,5	11,67	1331	2,1	14,80	39,5	46,9	0.84	6,2
David Brown	885	2RM	1100	1973	12000	2200	32,1	43,7	3629	5,6	3,74	1276	27.9	20,89	1078	24,6	21,80	878	2,1	23,30	11,5	38,6	0,30	10.
Ebro	155 E	2RM	2050	1978	6990				2122	3,0	1,35	1608	29.6	17,59	2944	6,1	2,85	1244	2,5	19,10	8,6	41,4	0,21	24.
Ferrari	System50AR	4RM	1520	2002	1253	727	??	337	1979	5.1	2,46	1570	23,2	14.12	1537	23,1	14,36	1118	2,0	17,10	21,1	43,5	0,49	20.
Fiat	45-66	2RM	2150	1992	2771	2199	33,1	45,0	2200	2,9	1,26	1935	23,3	11,50	2160	7.7	3,42	1348	1,9	13,70	19.1	38,7	0,49	12,
Fiat	55-65	RT	2160	1987	5008?	2199	37,5	51,0	2743	5,3	1.85	2477	27.4	10.57	2201	26,6	11,55	1281	2,0	15,20	43,8	53,3	0,82	9,7
Fiat	55-76	4RM	2150	1991	2806?	2199	37,5	51.0	2434	4.0	1,57	2232	27.6	11.81	2232	27.6	11,81	1430	2.4	15,80	33.7	41,2	0.82	8,3
Fiat	55-85	RT	1960	1998	3900	2199	37,5	51,0	2434	5,0	1,96	2235	33,0	14,11	1942	30,8	15,15	1250	2,2	17,00	20,5	48.6	0,42	8,2
Fiat	55-86	4RM	1900	1994	3571	2199	37,5	51.0	2324	4,4	1,81	1955	34.7	16.96	1955	34,7	16,96	1159	2.4	19,60	15,6	50,1	0,31	15,5
Fiat	FD 72-85	RT	2150	1995	3047	2199	50,7	69,0	2939	4,3	1,62	2323	47.1	19,37	2208	46,2	19,99		3,3	23,30	20,3	46,1	0,44	8,5
Ford	1720	4RM	2300	1992	966				2704	4,5	1,59	2166	13,0	5,73	2291	12,7	5,30	1617	1,0	6.10	6.4	40,2	0.16	19,5
Ford	3930	4RM	1760	1990	777		40,4	55,0	2161	4,9	2,17	2036	34.0	15,95	1790	32,2	17,19		1,9	17,80	11,6	52,0	0.22	5,8
Ford	4610	4RM	1800		5383	2300	36,8	50,0	2324	5,6	2,30	2103	42.0	19,08	1804	37,8	20.02		2,6	21,50	12,7	49,4	0.26	9,5
Ford	1910	2RM	2450	1986	1070				2713	3,6	1.27	2573	17.6	6,54	2435	17,5	6,87		1,5	8,30	27,0	37,7	0.72	5.2
Goldoni	Compac 604 D	4RM	2100	1997	1828				2231	3,2	1,37	1887	31,4	15,90	2100	11.2	5,10		2,4	16,70	5,0	39,3	0.13	15,4
Goldoni	Gitma 3.45 L	RT	2000	1994	1567				2126	10,4	4,67	1930	26,3	13,02	2008	19,6	9,33		1,9	15,00	15,2	43,3	0,35	9,2
Goldoni	U 238	4RM	1800	1986	>10000	2806	23,6	32.0	1444	14.8	9,79	1444	14.8	9,79					1.5	9.80	0.1	0.0	-	0.0
Goldoni	U 238	4RM	1800	1984	4400?		23,6	32,9	1843	2,5	1,30	1627	17.5	10,28					1,5	10,90	6,1	28,8	0,21	11,1
Goldoni	U 238	4RM	1800	1985	5400		23,6	32.0	1880	2.6	1.32	1561	16.8	10,28					1.5	11.00	7.0	32.2	0.22	17.
Hurtimann	Prince 435	4RM	2600	2002	216		25,7	35,0	3119	4,6	1,41	2827	17.0	5,75	2647	16,7	6,03		1,4	6,90	20,1	39,6	0,51	9,4
JD	1140	2RM	2100	1982	8900		44	60	2690	5,4	1,92	2528	34.0	12,85	2115	31,7	14.32		2.3	16,10	25.3	48,7	0,5	6.0
JD	1550	2RM	2120	1988	5858				2660	4,1	1,59	2241	36,3	15,48	2163	35,7	15.77		2.2	17,70	14.4	50,8	0.28	8,9
JD	1030 VU	2RM	2100	1977	2878		30,6	41,6	2389	3.9	1.56	2233	24.5	10.48	2138	24.1	10.77		1.8	12,40	18.3	40.9	0.45	6.5
JD	1445 FA	4RM	2150	1990	2899				2424	3,8	1,50	2213	27.1	11,70	2213	27.1	11.70		1.9	14,80	26,5	50,6	0,52	8.7
JD	1745 F	4RM	2150	1989	7000		32,4	44,0	2864	3,9	1,52	1982	31,3	15.09	2131	30.7	13.76		2.6	18,10	20.0	43.2	0.46	19.2
JD	1846 F	4RM	2200	1999	1916		37,5	51.0	2892	20,9	8,35	2247	35.9	15,26	2247	35,9	15,26		2.4	16.80	10.1	42.9	0.23	6,1
JD	5400 S	4RM		2000	842		44,6	60,7	2441	4,2	1,64	1803	39.8	21,09	2102	37.9	17.23		3,9	23,80	12.8	36.0	0,36	26,1
JD	5500 N	4RM	2100	2001	1585				2843	4,1	1,60	2250	56,8	24,12	2119	55,8	25,16		4.6	28,40	17.8	37,0	0.48	7.9
Kubota	L4200	4RM	2500	1998	1304		33,1	45.0	2824	3.8	1.29	2628	24.7	8.98	2533	24.7	9.32		2.1	11.80	31.4	40.2	0.78	6.9
Lamborghini	555ST	RT	2020	1998	1541		40,4	55.0	2440	9.2	3.60	2367	34.7	14.01	2063	32.4	15.01		2.5	16,90	20.7	41.8	0.49	3.0
Lamborghini	613DTV	4RM	1980	1985	4931		41.2	56.1	2232	3.8	1.63	2030	34.4	16.19	1942	33.5	16.48		2.7	17.70	9,3	34,6	0.27	9.1
Lamborghini	660 F plus	4RM	2050	1999	3656		44.1	60.0	2373	4.1	1.65	2196	35.4	15,40	2040	34.2	16.02		2.3	18.50	20.1	49.1	0.41	7.5
Lamborghini	C533	RT	1500	1985	5000?		39.7	54.1	1764	3.7	2.02	1520	26.3	16.53	1520	26.3	16.53		2.1	18,10	9.5	38.1	0.25	13.3
Lamborghini	C554	RT	1500	1990	>10000		39,7	54.1	1563	3,1	1,89	1389	33,1	22,77	1502	16,2	10,30		3,1	22,80	0,1	15.9	0.01	11.1
Lamborghini	C554	RT	1960	1985	>10000		39.7	54.1	2210	3.8	1.64	2027	29.9	14.09	1958	29.6	14,44	1298	2.1	15.50	10.0	41.3	0.24	8.3
Lamborghini	C583S	RT	1960	1990	>10000		39,7	54.1	2316	4.4	1.82	1996	23.4	11.20	1996	23.4	11.20		1.8	14.60	30.3	49.9	0.61	13.8
Lamborghini	Grimper 555 ST	RT	2050	2000	362		40.4	55.0	2494	4.7	1.80	2354	33.5	13.60	2034	32.3	15.17		2.3	17.90	31.7	49.7	0.64	5.6
Lamborghini	Grimper 555 ST	RT	2050	2001	247		40.4	55.0	2646	4.9	1.86	2375	32.0	12.87	2050	31.1	14.49		2.3	17,30	34.4	50.2		5,6

Anexo 2

Parte da base de dados dos tractores novos

Marca			#M-sc	MtPm	MtPm	MtPm	rM-n	Pt/rM-n	BnirM-n	Cs	194-540	PtrM-540	br16-546	rM-bm	PtrM-bm	brM-brn	R.B.	SDR	GF	GIR
RCE Verious	500 AR	4RM®	(cpm) 2935	(rpm)	(kW)	(cv)	(rpm)	(kW)	(daNm)	(g/kWh)	(rpm)	(kW)	(dafim)	(rpm)	(kW)	(daNm)	(35)/	AND I		(%)
BCS Variant BCS Vithar	800 RS	4RM=	2835		23,5 36.7	32,0 49,9	2800 2600	23,5 36.7	13,49	248 206	2577 2286	23.1 35.1	8,54 14,75	180G 1700	1,9	10,10	26,0	35,7	0,7	4,6
BCS Vilhar	900 MT	4RM=	2880		50,1	68.1	2600	50.1	erformer outside some	254	- Halalalana (il	Anna and a second			NAMES OF STREET OF STREET	16,90	25,3	34,6	0,7	8,3
BCS Vivid	400 DT	4RM	3550		21.5	29.2	3400	21,5	18,41	277	2766	47,9 18.8	20,13 6.53	1400 2100	3,7 1.5	25,40 6.80	38,0 12.6	46,2 38,2	0,8	9,7
Case IH	CS 48 a	4RM	2250	2250	34.5	46.9	2250	34.5	14.65	260	2944	33.0	15.38	1400	2.7	18.35	25.3	37.8	0.7	******
Case IH	CS 94a M2	4RM	2488	2102	66,6	90,6	2300	63.8	26.50	249	2132	55,0 66,6	29,75	1205	4.7	37.00	39.6	47.6	0.8	7.6
Case IH	CX 100	4RM		2000	65.0	88.4	2200	64.3	27.92	279	2000	85,0	30.95	1404	5,4	36,40	30,4	36.2	0,0	7,0
Case IH	CX 50	4RM		2248	31.7	43.1	2248	31.7	13.47	277	2306	30.5	14.48	1200	2.5	16,40	21.7	48.6		
Case IH	CX 60	4RM		2200	42.1	57.3	2250	41.9	17,79	258	2006	41.0	19.47	1293	3.0	21.80	22.5	42.5	income o	-
Case IH	CX 70	4RM		2000	46.3	63.0	2200	44.5	19.33	282	2980	46.3	22.05	1200	3.3	26.50	37.1	45.5		
Case IH	CX 80	4RM		2000	54.4	74.0	2200	53.2	23.10	282	2000	54.4	25.90	1406	4.5	30,50	32.0	35,1	-	-
Case IH	CX 90	4RM		2000	60.5	82.3	2000	59,4	28.38	267	1098	50.5	28.84	1400	4.7	31,90	12.4	30.8		
Case IH	JX 55	2RM		2500	33.6	45.7	2500	33.6	12.84	263	2205	31.6	13.68	1500	2.5	15.83	21.7	40.0		
Case IH	JX 65	4RM		2500	37.8	51.4	2500	37.8	14,45	249	2200	35,6	15,41	1300	2.4	17.58	21.7	48.0		
Case IH	JX 75	2RM		2550	45.7	62.2	2500	45.2	17.27	248	2200	42.0	18.18	1200	2.6	20,78	20,3	52.0	d-secure sec	000000000000000000000000000000000000000
Case IH	JX 85	4RM		2525	53.4	72.6	2500	53.0	20.25	250	2280	49.1	21.26	1500	3.6	23.01	13.6	40.0		
Case IH	JX 95	2RM		2350	62.1	84,5	2500	60,9	23,27	248	2200	60.9	26.36	1300	3.8	27.98	20.2	48,0	-	proposersor
Case IH	MX 100 C	4RM		2200	61.4	83,5	2200	61,4	26,66	294	2200	51.4	26,58	1398	5.2	35.20	32.0	36.5		
Case IH	MX 80 C	4RM		2100	50,6	68,8	2200	50.0	21.71	297	2260	50.0	21,65	1305	4.1	29.60	36.3	40.7	-	processors and the second
Case IH	MX 90 C	4RM		2100	56,3	76,6	2200	56,2	24,41	291	2200	56.2	24,33	1394	4.7	31,95	30,9	35,6		
Case IH	STX 375	4RMa	2134	1600	288,3	392.1	2000	252.0	120.38	210	2000	252.0	120.00	1198	22,6	179.70	49.3	40.1	1.2	6.3
Case IH	STX 440	4RMa	2154	1700	338,7	460,6	2000	298,8	142,74	214	2000	298,8	142,29	1100	25,0	216,60	51.7	45.0	1,1	7,1
Case IH	STX 440 Q	RT	2160	1599	335,8	456,7	1999	297,6	142,24	211	1999	297.6	141.79	1099	24,8	214,60	50.9	45,0	1.1	7,5
Daedong	DK 45	4RM	2800	2600	27,0	35,7	2600	27,0	9,92	302	2503	27.0	10,27	1700	2,2	12,14	22,4	34,6	0,6	7,1
Daedong	DK 50	4RM	2846	2500	30.3	41,2	2600	30,3	11,13	291	2503	29.8	11.34	1900	2.5	12,53	12.5	26,9	0,5	8.6
Daedong	DK 80	4RM		2300	49,7	67,6	2300	49.7	20,65	282	2205	49,3	21,29	1400	3,7	25,17	21,9	39,1		
Daedong	DK 90	4RM		1950	55,6	75,6	2205	50,8	22,01	276	2205	50,8	21,94	1400	4.4	29.94	36.0	36.5		
Daedong	£3503 D	4RM	2948		21,2	28,8	2600	21,2	7,79		2431	20,1	7,87	1500	1,5	9,68	24,3	42,3	8,6	11,8
Daedong	LB1914	4RM	2952		12,8	17,4	2800	12,8	4,37		2648	12,8	4,60	2200	1,2	5,12	17.2	21.4	0.8	5,1
Daedong	LF 80-90	4RM	2593	2402	56.8	77,2	2402	56,8	22,59	263	2198	55,2	23,92	1556	4.6	28,42	25,8	35,2	0,7	7,4
Daedong	LK 2554	4RM	2808		14,3	19,4	2600	14.3	5,25		2429	13,7	5,37	1500	1,1	7,13	35,7	42,3	8,0	7,4
Daedong	LK 3504	4RM		2700	19,1	26,0	2700	19,1	6,76	317	2610	18,9	6,90	1800	1,6	8,24	21,9	33,3		
Deutz-Fahr	r Agrolux 60	4RM	2600		40,9	55,5	2400	40.9	16,28	221	2044	38,4	17,89	1400	2.9	19,70	21.0	41,7	0,5	7,7
Deutz-Fahr	r Agroplus 60	4RM	2494	2399	38.4	52,2	2399	38,4	15,29	299	2304	37.9	15.67	1571	2,9	17,66	15,5	34,5	0,4	3,8
Deutz-Fahr	Agropius70	4RM	2452	2300	49,6	67,5	2300	49,6	20,60	267	2300	49,6	20,54	1498	3,9	24,71	19,9	34,9	0,6	6,2
Fendt	410 Vario				63,7	85,4	2100	63,7	25,98	252	1937	70,6	34,71							
Fendt	411 Vario				71,6	96,0	2100	71,6	32,58	255	1937	79,2	38.94							
Fendt	412 Vario				80,0	107.3	2100	0.08	36,40	249	1937	85,5	42,04							
	Farmer 411 Vario		2294	1805	82,7	112,5	2102	75,3	34,23	238	1939	80.7	39,64		6,7	51,10	49,3	40,5	1,2	8,4
Fiat	55-56	2RM	2500	2500	36.1	49,1	2500	36,1	13,80	278	1966	30,3	14.68		2.0	15,88	15,1	52,0	0,3	0,0
Fiat	L85	RM	2741		56,7	77,1	2495	56,7	21,71		2383	56,4	22.54		4,0	28,01	29,0	45,3	0,6	9,0
Fiatagri	L60	RM	2745		38,9	52,9	2502	38,9	14,85		2363	37,5	14,99		2.9	18,66	25,6	40,3	0,6	8,8