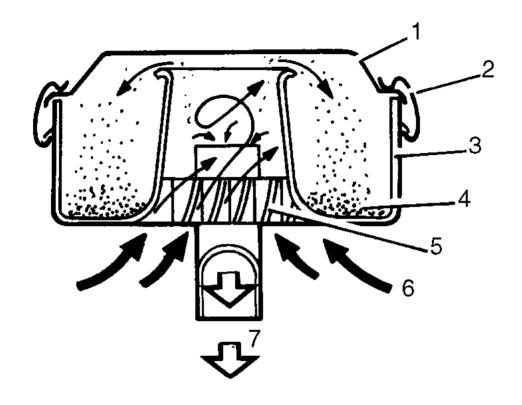
MANUTENÇÃO E UTILIZAÇÃO DE TRATORES AGRÍCOLAS


- 1- MANUTENÇÃO E UTILIZAÇÃO DO MOTOR
- 1.1- Sistema de alimentação de ar
- 1.2- Sistema de distribuição
- 1.3- Sistema de injeção
- 1.4- Sistema de refrigeração
- 1.5- Sistema de lubrificação
- 1.6- Sistema elétrico
- 1.7- Principais deficiências de manutenção do motor que afetam o consumo

- 1- MANUTENÇÃO E UTILIZAÇÃO DO MOTOR
- 1.1- Sistema de alimentação de ar

Constituição e funcionamento

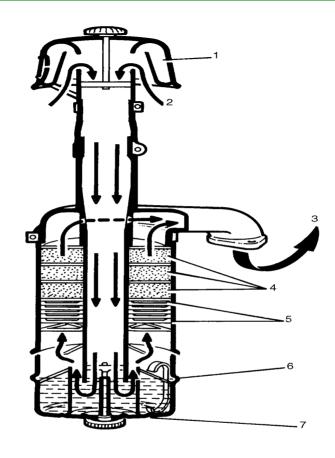
Manutenção dos filtros de ar

- 10% menos de ar aspirado conduz a um aumento do consumo de 7%;
- 20% menos de ar aspirado conduz a um aumento do consumo de 22%.

Representação de um pré-filtro centrifugo.

- 1- Tampa 2- Grampos 3- Taça 4- Poeiras 5- Palhetas 6- Entrada de ar
- 7- Saída do ar

Pré-filtros


Os pré-filtros têm palhetas em torno do tubo de aspiração, que conferem ao ar uma trajectória circular, que faz com que seja centrifugado, o que permite a deposição das partículas de maior dimensão.

A eficácia do pré-filtro depende da velocidade do ar, ou seja, do débito aspirado.

Cuidados com os pré-filtros:

- limpeza frequente do "copo" do pré-filtro (se existente) ou do "chapéu" exterior de entrada.
- Os pré-filtros mais recentes encontram-se ligados por uma conduta ao colector de escape o que faz com que as poeiras sejam aspiradas e expulsas com os gases de escape.

Não se deve soprar nos tubos do pré-filtro, sem os filtros principais estarem montados, pois as poeiras podem ir directamente para os cilindros.

Corte esquemático de um filtro de ar em banho de óleo de um trator.

- 1- Pré-filtro 2- Entrada de ar 3- Saída do ar filtrado 4- Elementos filtrantes
- 5- Membranas filtrantes 6- Marca do nível de óleo 7- Tina de óleo

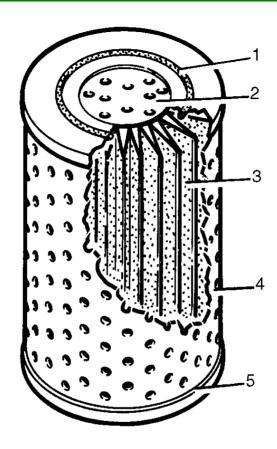
- Filtros de ar em banho de óleo
- Utilizam-se principalmente nos tractores de média potência.
- Este tipo de filtros são tanto mais eficazes quanto maior for a velocidade do ar na conduta de aspiração, pelo que são mais utilizados em motores que funcionam a regimes constantes.
- Nos baixos regimes o rendimento é baixo podendo descer até aos 97% ao "ralenti", sendo o rendimento de 99% ao regime nominal.

Constituição e funcionamento

- Os filtros de ar em banho de óleo apresentam um tubo de aspiração, precedido por um pré-filtro, que conduz o ar para uma taça com óleo onde as impurezas se precipitam.
- Depois de liberto das poeiras de maior dimensão no pré-filtro e na taça de óleo, o ar é conduzido através de uma rede de filtração, colocada em torno do tubo de aspiração, que retém as partículas ainda existentes, e só depois chega ao colector de admissão.

Filtros de ar em banho de óleo.

Principais vantagens:


- fácil manutenção;
- duração praticamente ilimitada (baixo custo);
- provocarem baixas perdas de carga (15 g/cm²).

Principais inconvenientes:

- baixo nível de filtração;
- impossibilidade de serem utilizados em motores sobrealimentados, pois o óleo pode ser aspirado;
- ter que ser montado na vertical;
- o tractor não poder trabalhar em zonas inclinadas, pois o óleo pode ser aspirado e queimado sem controlo (nos motores de ciclo Diesel a regulação do regime não é feita ao nível da admissão do ar).

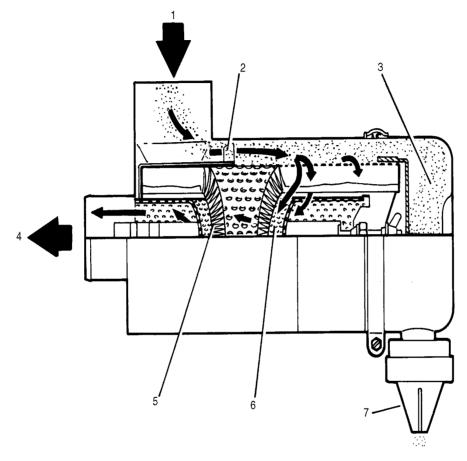
Cuidados de manutenção:

- limpeza da tina de óleo situada na base do filtro, colocando-se óleo novo até ao nível aí indicado;
- limpeza da rede metálica filtrante.

Esquema de um elemento de filtro de papel.

- 1- Junta 2- Armadura interior 3- Elemento de filtro de papel
- 4- Armadura exterior 5- Tampa

Filtros de cartucho


Os filtros de cartucho são o tipo de filtros mais utilizados nos motores de ciclo Diesel, pois são eficazes mesmo em atmosferas carregadas de poeiras e em qualquer regime do motor.

Constituição e funcionamento

São constituídos por uma caixa cilíndrica fabricada em chapa de aço e um elemento de filtro de papel constituído por duas armaduras metálicas perfuradas, no meio das quais se encontra o elemento filtrante propriamente dito. Nos topos tem duas chapas circulares, tendo uma delas um orifício circular para deixar passar o ar.

O papel filtrante, constituído por um conjunto de fibras de celulose com 4 - 10 µm de diâmetro, é disposto em harmónio por forma a aumentar a área de contacto com o ar. A espessura do papel varia entre os 200 µm e 1 mm, conforme se pretenda uma menor perda de carga ou maior resistência, sendo reforçado por impregnação em resina.

A entrada de ar faz-se pela periferia do elemento filtrante, saindo por um tubo central; este circuito é inverso aos dos filtros anteriores.

Esquema de um filtro de ar do tipo seco com um pré-filtro 1- Entrada de ar 2- Palhetas periféricas 3- Cuba para retenção das poeiras maiores 4- Saída de ar 5- Elemento filtrante primário 6- Elemento filtrante secundário 7- Válvula para saída das poeiras

Filtros de ar de cartucho (cont)

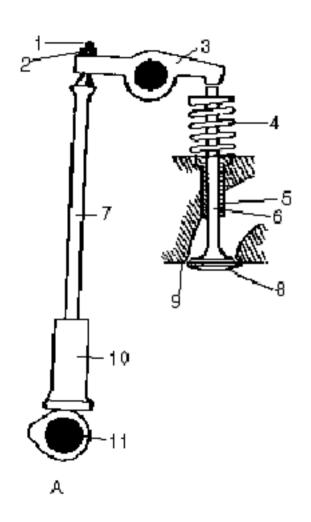
Vantagens

A principal vantagem deste tipo de filtros relativamente aos em banho de óleo é a sua eficácia que é superior a 99.5%, sendo de 99% para as partículas inferiores a 2 µm.

A eficácia dos filtros de cartucho não depende do regime motor.

Cuidados de manutenção

Limpeza com uma uma corrente de ar de intensidade moderada, no sentido de dentro para fora, contrário ao sentido do deslocamento do ar aspirado.

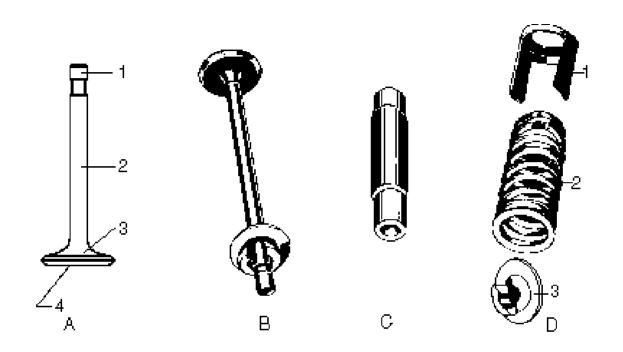

Proceder à sua substituição quando já não for possível limpá-lo convenientemente da forma descrita.

- 1- MANUTENÇÃO E UTILIZAÇÃO DO MOTOR
- 1.2- O sistema de distribuição nos motores a quatro tempos

Constituição e funcionamento do sistema de distribuição

As válvulas e os seus órgãos de acionamento.

Manutenção do sistema de distribuição.



Sistemas de distribuição com válvulas à cabeça

1- Parafuso de afinação da folga 2- Porca de fixação do parafuso de afinação 3- Balanceiro (martelo) 4- Mola da válvula 5- Guia da válvula 6- Válvula 7- Vareta 8- Cabeça da válvula 9- Sede da válvula 10- Taco 11- Came

Constituição de uma válvula

- A cabeça tem a forma de cogumelo achatado com o bordo chanfrado, em bisel, que assenta sobre a sede da válvula.
- A haste é alongada e tem movimento alternativo no interior da guia da válvula, apresenta um acabamento e folgas muito precisas, para ajudar o arrefecimento e evitar a passagem de óleo para os cilindros.
- As guias, juntamente com o óleo projectado pelos balanceiros, asseguram o arrefecimento das válvulas.
- As folgas entre as hastes das válvulas e as guias estão geralmente compreendidas entre 0.025 0.075 mm, para as de admissão, e 0.050 0.10 para as de escape.
- O pé é a parte terminal da válvula, oposta à cabeça, e que é endurecido por tratamento térmico ou apresenta um troço de metal duro. Tem um entalhe que serve para fixar as molas que mantêm a válvula na posição fechada.

Representação de uma válvula e diferentes peças de fixação

A: 1- Pé 2- Haste 3- Cabeça 4- Chanfro

B: Válvula com prato

C: Guia da válvula

D: 1- Guia da mola 2- Mola 3- Anilha cónica

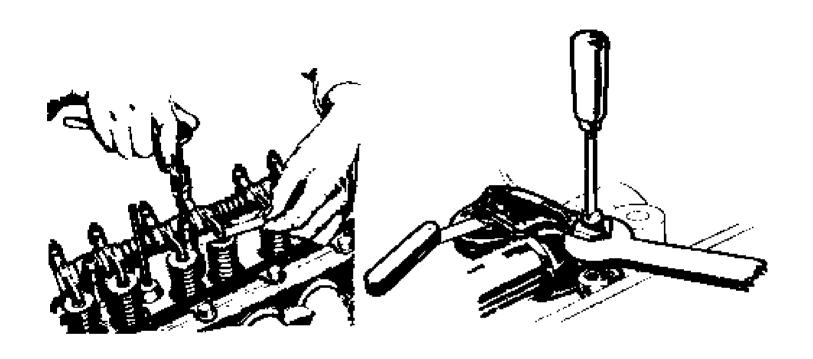
Afinação da folga das válvulas

- Estando as válvulas sujeitas a importantes variações de temperatura, especialmente as de escape, é fundamental que exista uma folga entre o pé da válvula e o elemento que o pressiona pois, caso contrário, quando da sua dilatação não fechariam completamente.
- A folga excessiva implica também um mau funcionamento do motor pois conduz a um atraso na abertura e a uma antecipação no fecho.

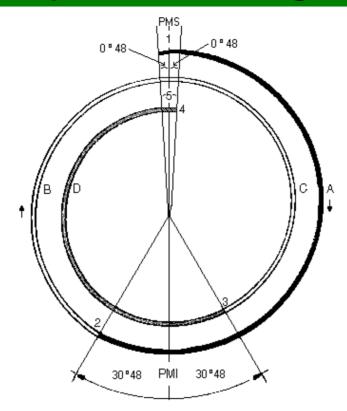
As folgas entre os pés das válvulas e os balanceiros (tacos) dos motores são fixadas pelos construtores, pois de acordo com a construção o efeito da dilatação é variável; a folga é maior nas válvulas de escape do que nas de admissão.

Salvo indicações em contrário, as folgas preconizadas referem-se ao motor a frio (parado pelo menos 6 a 10 horas) e são:

- 0,20 0,30 mm para as de escape
- 0,10 0,20 mm para as de admissão.


Afinação da folga das válvulas (cont)

Antes de proceder à verificação das folgas, utilizando um jogo "apalpa folgas", e depois de ter retirado a tampa das válvulas é preciso referenciálas de modo a distinguir as de admissão das de escape.


É necessário também conhecer a ordem de inflamação, dado que a afinação deve ser feita, em cada cilindro, com a árvore de manivelas (cambota) colocada de tal modo que o êmbolo respectivo se encontre no ponto morto superior, no fim da compressão. Neste momento, a que corresponde a inflamação, as válvulas desse cilindro estão bem fechadas e prontas a serem verificadas.

A identificação da ordem de inflamação deve ser feita observando a sequência do contrabalanço das válvulas de cada cilindro.

O contrabalanço, ou seja o movimento simultâneo das duas válvulas de um cilindro, obtém-se devido ao avanço da abertura da válvula de admissão e atraso no fecho da válvula de escape.

Afinação das válvulas de um motor com válvulas à cabeça

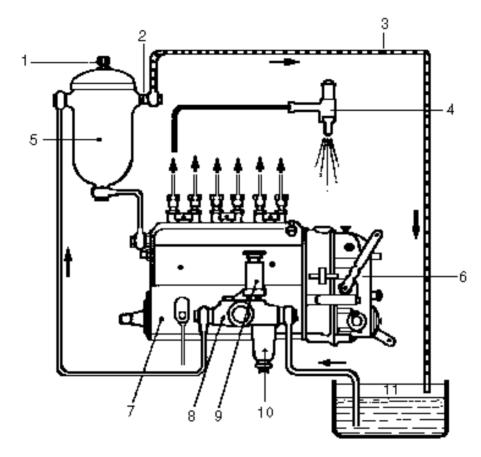
Representação de um diagrama circular de distribuição

- A- admissão B- Compressão C- Expansão D- Escape
- 1- Avanço à abertura da válvula de admissão 2- Atraso no fecho da válvula de admissão 3- Avanço à abertura da válvula de escape 4- Atraso no fecho da válvula de escape 5- Ângulo em que as duas válvulas se encontram abertas

A- MANUTENÇÃO E UTILIZAÇÃO DO MOTOR

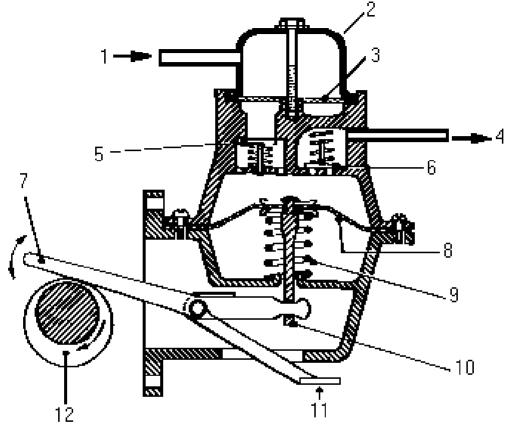
1.3- Sistema de injecção

Constituição e funcionamento do sistema de injecção.

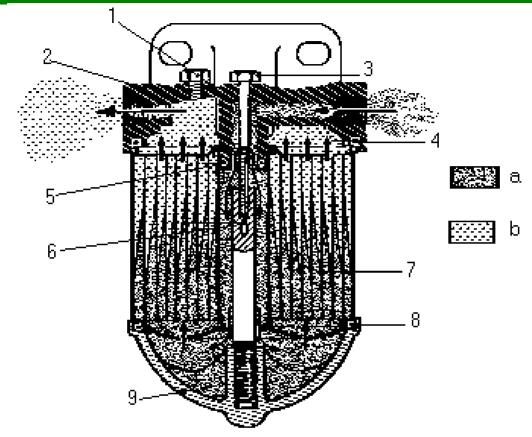

Mudança dos filtros

Regulação da pressão de injecção

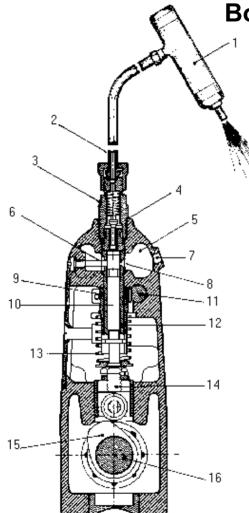
Constituição do circuito de injecção:


- reservatório;
- condutas;
- bomba de alimentação;
- filtros;
- bomba de injecção;
- injectores.

O circuito de alimentação dos motores de ciclo Diesel deve permitir a injecção da quantidade correcta do combustível, com uma dada pressão e no momento preciso.


Circuito de alimentação de um motor Diesel de 4 cilindros.

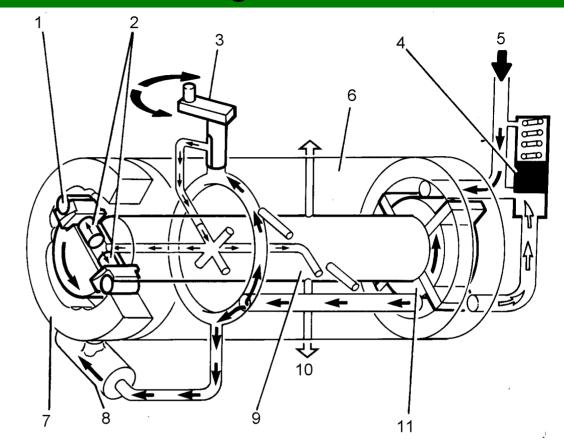
1- Parafuso de purga 2- Válvula de descarga 3- Circuito de retorno 4- Porta injector e injector 5- Filtro 6- Regulador 7- Bomba injectora 8- Bomba de alimentação 9- Bomba manual 10- Pré-filtro 11- Reservatório


Esquema representativo de uma bomba de alimentação de membrana.

- 1- Entrada do combustível 2- Tampa 3- Filtro 4- Saída do combustível
- 5- Válvula de aspiração 6- Válvula de refluxo 7- Alavanca de accionamento
- 8- Membrana 9- Mola 10- Veio de comando 11- Alavanca para comando manual 12- Excêntrico

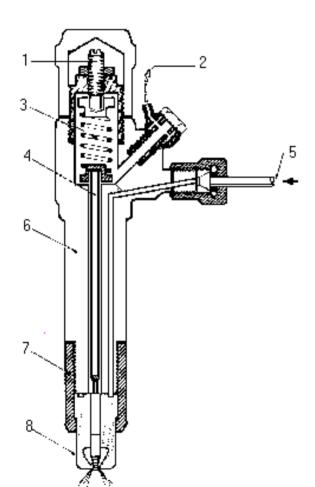
Representação de um corte de um filtro simples.

- 1- Parafuso de purga 2- Tampa do filtro 3- Parafuso de ligação do elemento filtrante 4- Junta de estanquecidade 5- Junta 6- Porca central 7- Cartucho 8- Junta de estanquecidade 9- Taça do filtro.
- a- gasóleo não filtrado b- gasóleo filtrado



Bomba de injecção em linha

Elemento de uma bomba de injecção em linha

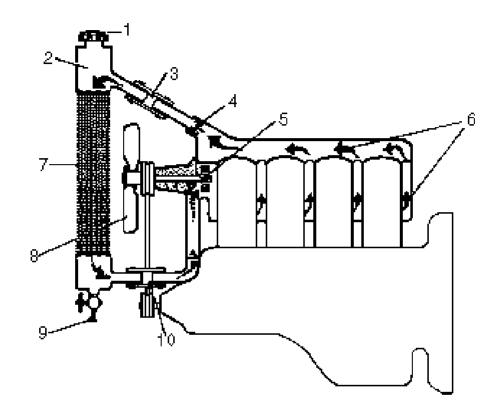

1- Injector 2- Tubo de alta pressão 3- Conduta de saída 4- Válvula de descarga 5- Câmara de alimentação 6- Janela de descarga 7- Entrada do combustível 8- Janela de admissão 9- Sector dentado 10- Êmbolo 11- Cremalheira 12- Cilindro 13- Mola 14- Taco 15- excêntrico 16- Arvore de cames.

Bomba de injecção rotativa

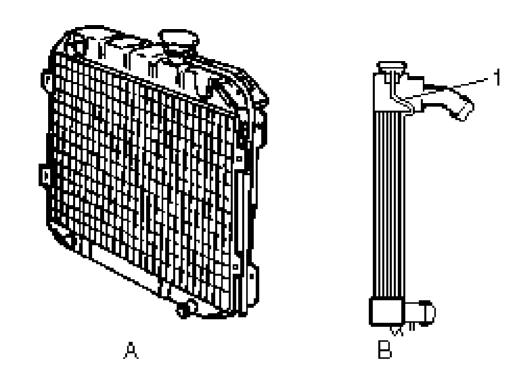
Funcionamento da bomba de injecção rotativa

- 1- Roletes 2- Êmbolos 3- Válvula de dosagem 4- Válvula reguladora
- 5- Chegada do combustível 6- Cabeça hidráulica 7- Anel com excêntricos
- 8- Corrector de avanço 9- Rotor 10- Saída para o injector 11- Bomba de alimentação

Representação de um injector


1- Parafuso de regulação da pressão de injecção 2- Retorno 3- Mola 4- Haste 5- Entrada de combustível 6- Porta - injector 7- Rosca 8- Bico injector

- 1- MANUTENÇÃO E UTILIZAÇÃO DO MOTOR
- 1.4- Sistema de refrigeração


Constituição e funcionamento dos sistemas de refrigeração

Manutenção dos sistemas de refrigeração

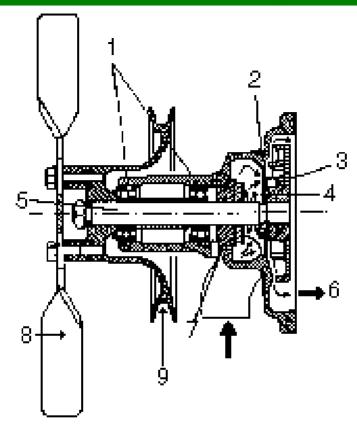
- Sistemas de refrigeração indirecta por água
- Nos motores refrigerados por água o bloco motor e a cabeça do motor apresentam cavidades, por onde circula a água, que estão ligadas a um radiador, por onde se perde a maior parte do calor.
- Sistemas de refrigeração por ar
- Os sistemas de refrigeração por ar, em virtude da sua simplicidade, são mais utilizados em motores monocilindricos, embora alguns construtores os utilizem em tractores de potências mais elevadas.
- Sistemas de refrigeração por óleo
- A refrigeração por óleo complementa os sistemas anteriores.

Circuito de refrigeração por água de um motor de quatro cilindros. 1- Tampão 2- Radiador 3- Ligação de borracha 4- Termóstato 5- Bomba de água 6- Circulação de água 7- Palhetas 8- Ventilador 9- Torneira 10- Ligação de borracha

Esquema de um radiador

A- Vista geral de um radiador B- Corte transversal de um radiador

1- Tubo de descarga


Refrigeração indirecta por água

O radiador.

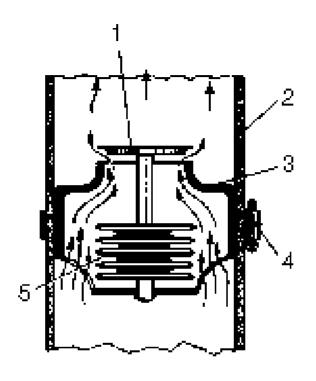
O radiador funciona como um permutador de calor onde a água quente é arrefecida pelo ar.

Este elemento apresenta dois depósitos, um superior e outro inferior, entrando no primeiro a água proveniente do motor, saindo do segundo a água para o motor.

Estes depósitos estão ligados por pequenos tubos, que podem ser planos, ter palhetas ou em forma de ninho de abelhas, que são atravessados pelo ar.

Ventilador e bomba de água.

- 1- Rolamentos 2- Corpo da bomba 3- Turbina 4- Mola 5- Eixo
- 6- Saída da água 7- Manga de apoio 8- Ventilador 9- Polea

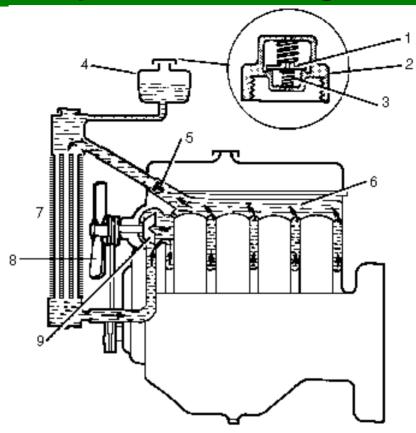

Refrigeração indirecta por água (cont)

O ventilador

- O ventilador, que tem como função forçar a passagem de ar pelo radiador, encontra-se geralmente montado na extremidade anterior do mesmo veio da bomba de água, que tem também um tambor de gornes (polea trapezoidal) que é accionado por uma outra correia montada na extremidade anterior da cambota, através de uma correia trapezoidal, que acciona também o alternador.
- Nos automóveis mais recentes o accionamento da ventoinha é feita electricamente a partir de determinada temperatura no circuito de refrigeração.

Bomba de água

As bombas de água, que são geralmente do tipo centrífugo, são constituídas por um tambor com palhetas, que roda dentro de um corpo (carter), entrando a água pelo centro sendo projectada, pela força centrífuga, para a periferia por onde sai para a conduta que a leva ao motor.


Representação de um termóstato fole 1- Válvula 2- Conduta 3- Corpo do termóstato 4- Colar 5- Fole

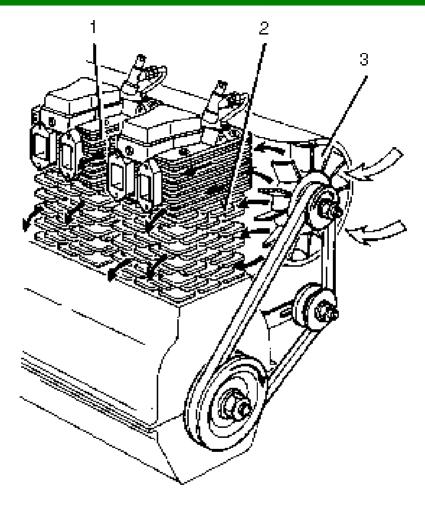
Termostato

O termostato é uma válvula que a mantém o circuito de refrigeração fechado, quando a temperatura da água é inferior a ± 85°, abrindo-a para temperaturas superiores; quando a válvula se encontra aberta a água passa para o radiador.

O termóstato, que está colocado na conduta que liga a cabeça do motor à parte superior do radiador, permite que o motor atinja mais rapidamente a temperatura de funcionamento, mantendo-a depois constante.

A indicação da temperatura de funcionamento é dada por um indicador de temperatura colocado no painel de instrumentos.

Sistema de refrigeração por água com o circuito selado.


1- Válvula de sobrepressão 2- Tampão 3- Válvula de reaspiração 4- Vaso de expansão 5- Termóstato 6- Circulação de água em volta dos cilindros 7- Radiador 8- Ventilador 9- Bomba de água.

Cuidados de manutenção dos sistemas de refrigeração indirecta por água

- radiador (vaso de expansão): verificação periódica do nível da água que no radiador se deve situar 5 cm abaixo do orifício de enchimento e no vaso de expansão nas marcas aí existentes; adição de um bom anticongelante durante o Inverno e um produto antiferrugem no Verão; limpeza periódica externa dos alvéolos do radiador com uma escova macia;
- não deixar o sistema sem líquido pois o contacto do ar com as paredes internas dos motores acelera a sua corrosão;
- bomba de água: lubrificação moderada, sob pressão, com o tipo de massa consistente recomendado pelo construtor, a não ser que se trate de uma bomba pré-lubrificada (solução mais usual nos tractores mais recentes);
- correia do ventilador (ventoinha): verificação da tensão e eventual regulação segundo instruções do construtor (alterando a posição do gerador, solução mais usual).

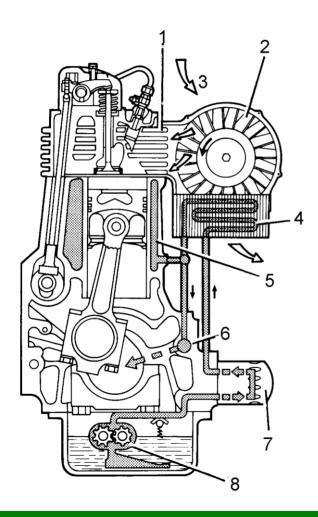
Refrigeração por ar

- A simplicidade destes sistemas de refrigeração resultam da maior segurança no funcionamento dos motores e na diminuição dos cuidados de manutenção.
- Nestes sistemas a necessidade de ar é cerca de 30 % inferior à dos sistema refrigerados a água pois a transmissão do calor para o ambiente é mais directa.
- Na refrigeração por ar os cilindros e respectivas cabeças estão separados e tem na sua periferia várias palhetas por forma a aumentar a área de contacto com o ar movimentado pela ventoinha.
- O ar é recolhido e canalizado para uma espécie de blindagem envolvente dos órgãos a refrigerar, nomeadamente a cabeça motor, bloco motor e colector de escape.
- A peça principal deste sistema é o ventilador que pode ser de palhetas, produzindo uma corrente de ar paralela ao eixo de rotação (axial) ou centrífugo, em que o ar entra pelo centro e é projectado para a periferia.

Sistema de refrigeração por ar 1- Cabeça do motor 2- Cilindro 3- Ventilador

Cuidados de manutenção dos sistemas refrigerados a ar:

- palhetas dos cilindros: limpeza frequente com escova dura ou com gasolina utilizando um pincel limpando bem em seguida com um pano seco e absorvente;
- ventilador: limpeza das pás e lubrificação dos rolamentos segundo instruções do construtor, verificando-se a tensão da(s) correias de transmissão.


Comparação da refrigeração por ar e água:

- menos cuidados de manutenção;
- não permite uma boa regulação da temperatura de funcionamento do motor;
- são mais ruidosos.

Nos motores refrigerados a ar o óleo de lubrificação aquece mais pelo que a refrigeração destes motores deve ser complementada com o circuito de refrigeração de óleo.

Refrigeração por óleo

A refrigeração por óleo complementa os sistemas anteriores.

Motor refrigerado por óleo e ar

- 1- Cabeça do motor 2- Ventilador 3- Ar
- 4- Radiador de óleo 5- Cavidades de refrigeração 6- Condutas de lubrificação do motor 7- Filtro 8- Bomba de óleo

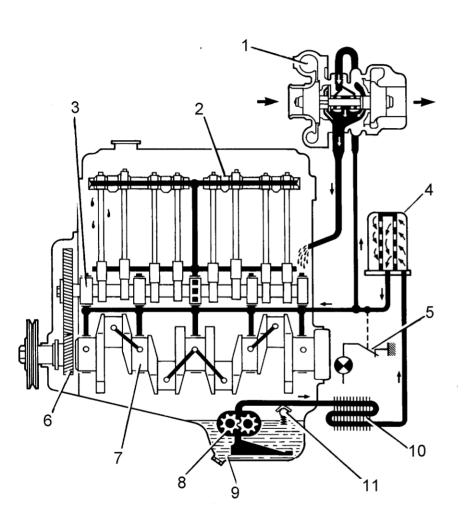
ATENÇÃO

Em qualquer das soluções de refrigeração apresentadas o importante é verificar a temperatura do motor, durante o trabalho, com a maior frequência possível.

Se a temperatura subir a valores > que 100 °C deve-se parar imediatamente o trabalho mantendo, no entanto, o motor a trabalhar ao "ralenti" durante alguns segundos, de modo a evitar ainda maior sobreaquecimento por inércia térmica.

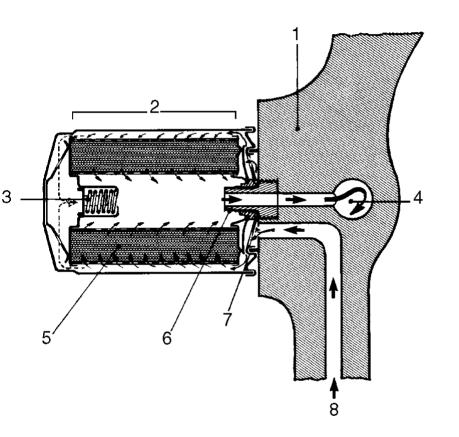
1- MANUTENÇÃO E UTILIZAÇÃO DO MOTOR

1.5- Sistema de lubrificação


Constituição e funcionamento

A manutenção do sistema de lubrificação

Escolha dos lubrificantes


Constituição de um sistema de lubrificação

- o carter;
- a bomba de óleo;
- as condutas de óleo
- as válvulas de regulação;
- os filtros;
- o permutador de calor;
- órgãos de controlo e de segurança.

Circuito de lubrificação de um motor sobrealimentado

1- Turbocompressor 2- Veio com balanceiros 3- Árvore de excêntricos 4- Filtro 5- Contacto eléctrico e indicador luminoso 6- Distribuição 7- Cambota 8- Bomba de óleo 9- Carter de óleo 10- Radiador de óleo 11- Válvula limitadora de pressão

Representação de um corte de um filtro de óleo monobloco

1- Bloco motor 2- Elemento filtrante monobloco 3- Válvula de derivação 4- Saída do óleo para as diferentes partes do motor 5- Papel filtrante 6- Rosca 7- Junta do filtro 8- Chegada de óleo

Órgãos de controlo e de segurança

Estes órgãos permitem ao operador conhecer o estado de funcionamento do sistema de lubrificação e indicam o aparecimento de qualquer anomalia.

Vareta do óleo Indica o nível mínimo ("mín") e máximo ("máx") que o óleo deve ter no cárter.

Manómetro Indica o valor da pressão do óleo na conduta principal do bloco.

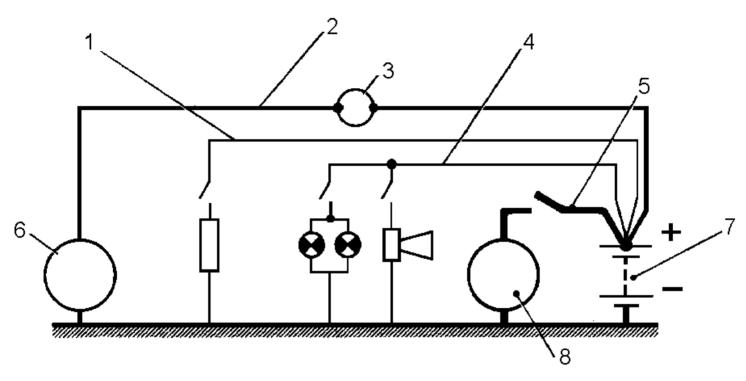
Avisador luminoso Indica se a pressão desce para além de um valor mínimo.

Massas Iubrificantes

As massa apresentam relativamente aos óleos as seguintes características:

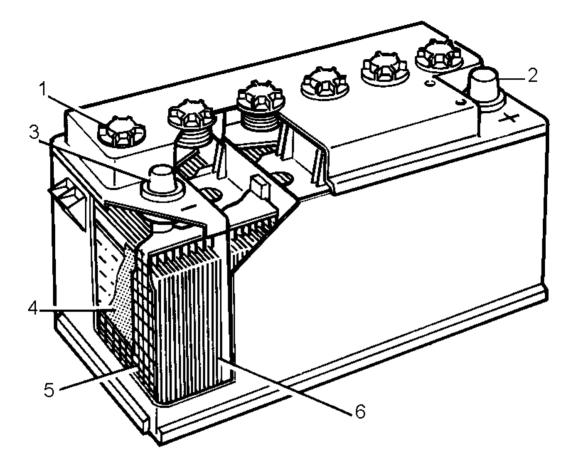
- asseguram a protecção contra impurezas exteriores;
- aderem bem às superfícies metálicas sujeitas a atrito;
- resistem bem à humidade e chuva;
- têm uma boa resistência às temperaturas elevadas e altas pressões.

Massa lubrificante (ou massa consistente) é o produto resultante da dispersão de um agente espessante (gel) num lubrificante líquido, ficando com uma consistência de sólida a semifluida, podendo ainda conter outros ingredientes destinados a conferir-lhe propriedades especiais, nomeadamente aditivos anti-oxidantes, extrema-pressão e anti-corrosivos.


O lubrificante, que tem um baixo grau de viscosidade, representa cerca de 3/4 da massa lubrificante.

- A manutenção do sistema de lubrificação
- verificação do nível de óleo motor;
- substituição do óleo e filtro de acordo com as indicações do construtor;
- lubrificação dos copos com massa consistente de acordo com as indicações do construtor.
- A existência de um mapa de manutenção, com a indicação da periodicidade vs tipo de operação de manutenção, é fundamental para assegurar uma correcta manutenção dos equipamentos.

- 1- MANUTENÇÃO E UTILIZAÇÃO DO MOTOR
- 1.6- Sistema eléctrico


Constituição e funcionamento do sistema eléctrico.

Manutenção do sistema eléctrico.

Os diferentes circuitos eléctricos de um tractor

- 1- Circuito de pré-aquecimento 2- Circuito de carga 3- Amperimetro
- 4- Circuito de iluminação e sinalização 5- Circuito de arranque 6- Gerador
- 7- Bateria 8- Motor de arranque

Representação de um corte de uma bateria de chumbo.

- 1- Bujão 2- Borne positivo 3- Borne negativo 4- Placas isolantes
- 5- Placas negativas 6- Placas positivas

- Constituição e funcionamento da bateria de acumuladores
- As baterias de acumuladores apresentam-se sob a forma de uma cuba compartimentada, tendo cada divisão (elemento) um dado número de pares de placas constituídas em chumbo endurecido ou antimónio.
- Cada um destes pares estão separados por placas de material isolante poroso, designadas por separadores, encontrando-se todas elas submersas numa mistura de ácido sulfúrico (36%) e água destilada (64%) que se designa por electrólito.
- As placas positivas (negativas) de cada elemento da bateria estão ligadas entre si formando dois grupos distintos, denominados armaduras, das quais sai um fio condutor que termina num borne.
- As duas armaduras de cada elemento formam um acumulador, cuja tensão é de 2 V.
- Os vários acumuladores estão ligados em série formando uma bateria de acumuladores.

Características mais importantes de uma bateria:

- tensão;
- capacidade.

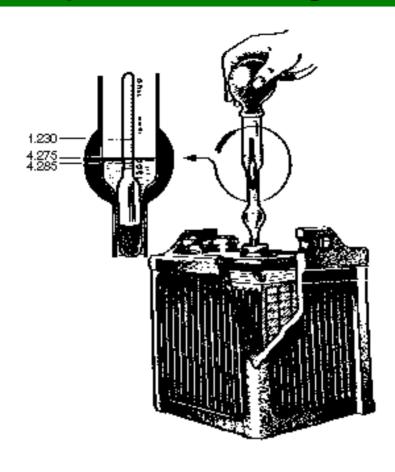
Tensão

A tensão da bateria, que depende do número de elementos que a constituem, é expressa em voltes (V).

Cada elemento tem uma diferença de potencial de 2 V, sendo o valor mais frequente, para as baterias dos tractores, os 12 V, ou seja, baterias com seis elementos.

Estes valores nominais variam ligeiramente conforme a bateria está ou não carregada.

Capacidade


A capacidade da bateria, expressa em amperes/hora (A/h), define-se como a intensidade da corrente que a bateria pode fornecer durante um determinado intervalo de tempo, até que aquele valor atinja um nível considerado como mínimo.

A manutenção do sistema eléctrico

A manutenção da bateria

- manter o nível do electrólito um pouco acima das placas (6 a 10 mm) pela adição de água destilada;
- verificar a densidade do electrólito pela utilização de um densímetro (pesa ácidos). A densidade do electrólito de uma bateria carregada está compreendida entre 1.275 1.300 ° Baumé;
- caso seja necessário proceder à carga da bateria a intensidade da corrente a utilizar não deve ultrapassar 1/10 da capacidade da bateria;
- a superfície da bateria deve estar limpa e os bornes isolados para evitarse perdas de carga.

Manutenção da tensão da correia do alternador

Controlo da densidade do electrólito de uma bateria de acumuladores com um densímetro

- 1.7- Principais deficiências de manutenção que afectam o consumo
 - obstrução dos filtros de ar
 - deficiente regulação do sistema de injecção e folga das válvulas e injectores
 - refrigeração insuficiente

Obstrução dos filtros de ar

Provocam perdas de carga e a redução de 10 - 20 % do enchimento do cilindro, com o consequente aumento do consumo.

Deficiente regulação do sistema de injecção, folga das válvulas e injectores

As dilatações e contracções dos metais e as vibrações resultantes do funcionamento do motor provocam alterações progressivas do débito de injecção e movimento das válvulas, o que implica uma tendência para o atraso da injecção, 5 - 10° de rotação, de que resulta a combustão incompleta do combustível.

Deficiente regulação do sistema de injecção, folga das válvulas e injectores (cont)

A diminuição da pressão de injecção conduz à combustão parcial do combustível e, consequentemente, ao aumento do consumo.

Refrigeração insuficiente

A elevação anormal da temperatura do motor provoca uma redução no enchimento dos cilindros, a falta de estanquecidade dos segmentos o que se traduz por uma combustão incompleta e diminuição da pressão no topo do êmbolo.

Bibliografia

- Santos, F. (1992). A oficina da exploração agrícola. Vila Real. UTAD. 22 pp.
- Santos, F. (1982). Peças, componentes e características do material agrícola. Vila Real. UTAD. 21 pp.
- Santos, F. (1992). Considerações gerais sobre material de tracção utilizado em agricultura. Vila Real. UTAD. 16 pp.
- Bianchi, F.(1982).Introdução ao estudo dos motores alternativos. Vila Real. UTAD. 25 pp.
- Santos, F.(1993). Tecnologia dos motores alternativos. Vila Real. UTAD. 11 pp.
- Santos, F.; (1993).Os sistemas de alimentação de ar dos motores a quatro tempos. Vila Real. UTAD. 25 pp.
- Santos, F.; (1993).O sistema de distribuição motores alternativos a quatro tempos. Vila Real. UTAD. 10 pp.
- Santos, F. (1992). O sistema de alimentação dos motores de ciclo Diesel. Vila Real. UTAD. 30 pp

Bibliografia (cont)

Santos, F.; (1993). Sistemas de refrigeração dos motores de combustão interna. Vila Real. UTAD. 10 pp.

Santos, F. (1993). Os sistemas de lubrificação e os lubrificantes nos equipamentos agrícolas. Vila Real. UTAD. 41 pp.

Santos, F. (1993). O sistema eléctrico dos tractores. Vila Real. UTAD. 18 pp.

MANUTENÇÃO E UTILIZAÇÃO DE TRACTORES AGRÍCOLAS

2- Manutenção das alfaias