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Dedication

For my parents . . .

Philosophy

‘To the writer however, the most important reason for the study of soil - vehicle mechanics is an educational one.
The training of agricultural engineers at University level is a relatively new enterprise which aims at producing
creative engineers in a shorter overall period than the old method of practical experience alone. In order to achieve
this the University must concentrate on the teaching of principles and the scientific method applied to each
particular field. The young engineer must then add to this some years of experience of the application of these
principles and must support them with adequate background knowledge.

If the scientific approach is the aim of academic agricultural engineering, then it is plain that the principles of
soil vehicle mechanics (and soil implement mechanics) must form an important part of the teaching.
Unfortunately in this, as in other branches of agricultural engineering, the principles are obscure and can only be
taught after considerable research on the part of the teacher. The research effort  . . . is not aimed at the direct
improvement of the farm tractor but rather at the elucidation of principles which can be taught to students who
will use them in the development of better machines.‘

A.R. Reece

Prayer

I offer you tonight, Lord, the work of all the tractors . . . in the world.

Prayers of Life: Michel Quoist



PREFACE

This book arose out of the experience that the author has had in teaching courses on tractor performance for a number
of years particularly at the University of Melbourne. It has been written primarily for student use in agricultural and
mechanical engineering courses at University and College level and as such, it assumes:
(a) a knowledge of basic mechanics, stress analysis, soil mechanics and power transmission elements appropriate

to second year professional engineering courses;
(b) a general knowledge of the layout and operation of the tractor.

The need for such a book arose out of the fact that, while there are other books written on the general topic of the
agricultural tractor, none treat the subject of tractor performance in an adequate way that builds on the engineering
science which is covered in first and second year engineering courses. Existing books tend to be too broad, being
written to cover the whole subject from the design of engine components to the economics of use. Others, that are
written essentially for users, merely describe the tractor and it’s operation. Nor is there a book written that provides
an suitable background for general engineers wishing to 'break into' the technical or research literature.

In writing this book an attempt has been made to keep the discussion as general as possible. It is concerned with
principles and does not become involved in consideration of the details of individual types of tractor even to the point
of not distinguishing between two wheel (walking) and four wheel tractors (except in relation to chassis mechanics).

Further no attempt has been made to describe the construction of the tractor or it’s various components and
operational systems. For those who wish to learn these details, reference should be made to the engineering textbooks
specifically written on these topics and other books on the agricultural tractor that includes them.

The understanding of the concepts on which a book such as this is based owes much to many others who have
published material on this subject; the author gratefully acknowledges the material that others have contributed in
this way. However, two people and their associated groups must be mentioned in particular.

The first is the late G.H. Vasey and his colleagues at the University of Melbourne. Their development of the
graphical representation of tractor performance (on which Chapter 3 is based) still provides the clearest understanding
of the subject for students and others who would learn from it.

The second is A.R. Reece and his colleagues at the University of Newcastle-on-Tyne, England. Chapter 4 which is
largely based on their work (and earlier work by Bekker) provides an understanding of the traction process in terms of
engineering fundamentals that are suitable for use at the student level. Indeed the educational philosophy as presented
by Reece (1964) on the dedication page seems entirely appropriate for this work.

The demise of agricultural engineering courses in developed countries and the need for cheap, basic educational
materials in developing countries prompted the compilation of this work. Its publication on the University of
Melbourne web site makes it available to a wide range of readers at little cost; it is hoped that, like the author, they
will appreciate this facility!

The author also wishes to acknowledge the support of his colleagues, in particular the secretarial assistance of Ms. J.
Wise, the comment on the text by Dr. Nguyen Phu Thien and the assistance in arranging for its publication on the
University of Melbourne web site by Dr. Graham Moore. The support of the Universities of Melbourne, Australia
and Hohenheim, Germany in providing the opportunity for study leave, during which much of the final compilation
of the work took place, is also acknowledged.

The encouragement and help of his wife Joan in the checking the manuscript and in many other ways is cause for
gratitude.

The author would value notification of any errors in this work.

RHM University of Melbourne, October 2002
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1.1

CHAPTER  1

THE AGRICULTURAL TRACTOR
1.1   INTRODUCTION

1.1.1 General

The agricultural tractor is one of the class of mobile machines that involves the ‘traction’ process. The word
'traction' and name 'tractor' come from the word to 'draw' or 'pull' so a tractor is basically  a machine for pulling;
other mobile machines such as  locomotives are in the same class. Vehicles like road trucks and even motor cars,
which are essentially vehicles for carrying loads, also involve the traction  process.

The tractor is also in the class of machines that involves operation under what are known as 'off-road' conditions.
Others in this class include machines used in earth moving, mining and military work, also four-wheel drive
motor vehicles for cross - country operation.

1.1.2 Justification

The question is often asked as to what is so special about the tractor and its operation that would justify its study
as a machine in its own right. This may be answered by considering the conditions under which the tractor is
expected operate.

(i) The agricultural soils, on which the  tractor operates, are 'weak', ie,  they slip (shear) when loaded
horizontally  and compact (compress) when loaded vertically. This condition, which the tractor and its
attached implement are frequently being used to produce, is usually ideal from an agricultural point of view
but is not conducive to efficient operation from a tractive point of view.

(ii) The loading conditions on the tractor are variable from job to job and, for efficient operation, ideally
require the tractor to be set up to suit each condition.

(iii) The operating conditions for the tractor are highly variable both in time and place, which requires continual
monitoring and adjustment of both tractor and implement in operation.

(iv) The ground surfaces are rough and sloping, hence both tractor and implement  control is difficult;
instability is an ever-present danger. This is important because the tractor must be able to be operated by
non-specialists.

(v) A clearance above growing crops and the ability for the operator to see the ground.

The tractor must function effectively and efficiently while satisfying these often conflicting requirements. The
study of the tractive processes on soft soils and the dynamics of implement control, are unique to the agricultural
tractor  and justify specialized analysis, research and design. The present work builds on elementary aspects of the
published literature on these studies and seeks to provide a basis for 'breaking into' the technical and research
literature.

1.1.3 Development
The tractor evolved in the second half of the 19th century and first half of the 20th into its present, conventional,
two wheel drive form and four wheel drive variation. This form owes much to history but also the fact that it is
an inherently logical arrangement.

(i) Designers followed early tractor designs that were simply replacements for horses or other draught animals.

(ii) The layout takes advantage of the transfer of weight to the main driving wheels at the rear, as the drawbar
pull on the tractor increases.

(iii) The layout is inherently stable in the horizontal plane because the implement commonly being pulled
behind the tractor tends to follow the latter and to pull it into straight line operation.

(iv) Rear mounted implements offer a minimum of offset loading and moment in the horizontal plane;this
contrasts with, for example side mounted implements.
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As a result there has been little or no major change in the basic lay-out of tractor / implement systems over their
period of development although there have been major improvements in engines, transmissions, tyres, control
systems and drivers' accommodation.

1.1.4 Classif ication of types

Tractors may be classified according to their basic form, which in turn depends on the function that each type is
designed to achieve. They may be classified as follows.

(i) Number of axles *  one - walking
*  two - conventional, riding

(ii) Number of driven axles *  one - conventional and walking
*  two - four wheel drive

(iii) Ground drive elements1 *  wheels and tyres, lugs, strakes
*   tracks - crawler, track laying

(iv) Use of wheels *  traction - conventional
*  propulsion / cultivation - power tiller

Illustrations and descriptions of the various forms of tractor and the associated terminology may be found in other
textbooks (Liljedahl et al (1989)).

1 .2   F UNCTIONAL REQUIREMENTS AND LIMITATIONS

1.2.1 Functional requirements

Although it is able to undertake a multitude of specific tasks, the functions of the tractor can be reduced to the
following (Reece 1971):

(i) the provision of up to full power in the form of a large drawbar pull (compared to the weight of the tractor)
at low speeds. The highly variable loading that occurs in agricultural work requires consideration of tractor
performance at part load, particularly with respect to fuel consumption.

(ii) the provision of power for driving and control of a range of implements and machines performing various
tasks and attached in a variety of ways.

(iii) the provision of power as the basis for a transport system in both on- and off-road conditions.

The main emphasis in this book is on how the tractor performs these functions, ie, on its    functional       perfo      rmance   .
There are of course other ways by which tractors might be evaluated such as by their economy, reliability, safety
or ease of operation. These are important but are beyond the scope of this book.

1.2.2 Performance limitations

Since its main function is to pull (or push), the question arises as to how well and within what limits the tractor
succeeds in performing those functions. How we might measure and represent that performance is also of interest.
This output is expressed, as in engineering mechanics, in terms of force (engine torque and drawbar pull), speed
(rotational and travel), power (engine and drawbar) and non-dimensional numbers (wheel slip, tractive efficiency).
The input is performance is expressed in terms of fuel consumption (actual and per unit power output).

                                                
1  Hereafter the term 'wheels' will be used to cover all  elements unless a specific reference is intended.
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Figure 1.1: Typical power trains (a) for a conventional tractor and (b) for walking tractor / power tiller
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The overall limitations to performance are also explored in this book as follows:

(i) At higher travel speeds the limit is engine stall (stopping); optimum engine loading and fuel consumption
are achieved by appropriate choice of engine speed and gear ratio.

(ii) At lower travel speeds in which the limit is wheel slip; the optimum wheel slip is achieved by an
appropriate choice of the magnitude of the drawbar load also the weight on and size of the tyres,
particularly on the driving wheels.

(iii) On steep slopes and / or when an incorrect hitch is used; this instability (in the longitudinal plane) is
overcome by limiting operation to appropriate slopes and using correct hitching.

Other limitations (not directly associated with performance) such as the actual occurrence of longitudinal and
lateral instability, and the loss of steering control due, for example, to vibration, are  also beyond the scope of
this book.

 1 . 3   S YSTEMS AND POWER OUTLETS

Tractors are built in many forms and sizes according to the particular functions  that they are required to perform.
However, in reviewing their performance it is sufficient  to consider the major systems and power outlets that are
common to most tractors. The block diagram of the main components in the power transmission system,
including the power outlets and forms, is shown in Figure 1.1 (a) for a conventional tractor with PTO and
hydraulic power outlets and in Figure 1.1(b)  for a walking tractor / power tiller.  

The following systems can be identified.

1.3.1 Engine

The engine, which is the immediate source of energy for the operation of the tractor, varies in type and size
according to the type and size of the tractor to which it is fitted. It is a mechanism which, using air, extracts the
energy from the fuel and transforms  it into a  mechanical (rotational) form.

Its output (in terms of torque, speed and power) is determined by the physical size of the engine (which determines
the amount of air that can be drawn in), the fuel burnt in that air and its speed of operation. Its performance,
which is represented in terms of  the fundamental characteristic for the engine, ie, the relationship between the
torque and (rotational) speed, largely determines and of course limits the performance of the tractor. These are
discussed in Chapter 3.

Many other aspects of engine design and operation affect its performance. These include the engine processes (the
cycle of strokes on which it operates), the type of fuel and its method of ignition (spark or compression ignition)
and the mechanical details such as the design of the components (pistons, crankshaft, valves) and the services such
as the lubrication and cooling systems. These details are covered in books on engine design and operation and will
not be considered further here.

Engines as used in agricultural tractors may be classified as follows:

(i) operational cycle * two strokes per revolution
* four strokes per revolution

(ii) fuel ignition * spark - gasoline, petrol, natural gas
* compression - diesel

(iii) air induction * unlimited- diesel
* throttled - spark ignition
* pressurized - super-charged

(iv) speed control * governed - automatic
* ungoverned - manual
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1.3.2 Power transmission systems and outlets

The transmission systems on the tractor serve to transmit power from the engine to the power outlets, viz:
(i) traction  system (wheels / drawbar / three point linkage)
(ii) power take off
(iii) hydraulic (oil) supply

The transmission elements which comprise these systems, may be classified according to their principle of
operation:

(i) mechanical * gears
* belts / chains

(ii) hydrostatic * fluid pressure

(iii) hydro-kinetic * fluid momentum -  fluid coupling
-  torque converter

The three transmission systems that transmit power to the three main outlets are discussed below.

(a)     Traction transmission   

(i) Conventional tractors

The components generally referred to as the `transmission´ and / or the `gear box´ transmit the rotation of the
engine to the rear wheels as shown in Figure 1.1 and 1.2. In the conventional tractor this is usually a mechanical
system with shafts, gears etc. Only this type will be considered in this book; discussion of the hydro-static
system may be found in  Goodwin (1979) and of the hydro-kinetic system in Vasey (1957-58).

Because the engine rotates at high speed (a few 1000's of rpm) and the tractor wheels must operate at low speed (a
few 10´s of rpm), the traction transmission has the function of reducing the speed of rotation of the engine to that
required for the rear wheels. Further, because not all operations require the tractor to travel at the same speed, the
transmission also has the function of enabling the speed reduction from engine to wheels to be varied by the
operator. Thus the travel speed may changed in from 6 to 12 steps, ie, from about 1 km/hr in a `low´ gear with a
'large' reduction ratio (q in Chapter 2) to about 20 km/hr in a 'high' gear with a 'small' reduction ratio. The
variable ratio is achieved by 'changing gears' (that are in mesh) so that the drive (motion) passes through gears of
different sizes (Figure 1.2).  This has the effect of altering the overall ratio of the transmission and causing the
wheels to run faster or slower.

The (traction) clutch, (Figure 1.2), which is usually of the friction type, is placed between the engine and the
transmission. It enables the driver to temporarily disconnect the engine from the rest of the transmission and to
make a gradual connection when power transmission is required and the tractor begins to move. Such
transmission clutches usually consist of one or more friction surfaces connected to the engine, which are pressed
by springs on either side of a disc connected to the remainder of the transmission.  Removal of the pressure on the
surfaces (disengaging the clutch with the pedal) allows the engine to continue to turn without turning the
transmission and the wheels.

That part of the transmission known as the 'differential' has the function of dividing the drive to the wheels and
allowing them to turn at different speeds as the tractor turns a corner.  Both wheels still drive because the input
torques    to them remain equal, but they turn at different    speeds   , corresponding to the respective radii of the curves
on which they are travelling. Many tractors have a device to lock the differential. This forces both of the rear
wheels to turn at the same speed and so allows the tractor to be driven out of a situation where the differential, in
normal operation, allows one wheel to slip and the other to not rotate at all. With the lock engaged the wheel
speeds    are now equal but the torques are    different;    hence it is not possible (or difficult) to turn a corner.

A further common component in the transmission is the 'final drive' which consists of speed reduction gears after
the differential. These are placed in this position near the wheels to avoid the low speed / high torque in the
previous parts of the transmission.



The Mechanics of Tractor - Implement Performance: Theory and Worked Examples - R.H. Macmillan

1.6

Figure 1.3 (a) Transmission system for walking tractor / power tiller
    (b) Walking tractor being used for ploughing flooded soil

Reproduced with permission of International Rice Research Institute
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(ii) Walking tractor

In the two-wheel or walking tractor (Figure 1.3) , the transmission usually consists of a variable speed V belt
drive from the engine, which also acts as a clutch as it is tightened or loosened.  A small gear-box may then be
fitted, which in turn drives the wheels through chains.

Such tractors are not usually fitted with a power take-off but while stationary may be used to drive equipment
such as a pump. The belt drive to the wheels is removed and is used to drive the attached equipment directly.

Power losses in the mechanical transmission systems of tractors are usually small, probably less than 10%.

(b)     Power       take-off             transm       ission   

An ('engine speed') power take-off (PTO) which is frequently fitted to conventional tractors consists of a
transmission from the engine to shaft which passes to the outside of the tractor, usually at the rear, and may be
engaged to drive attached machines (Figure 1.2). The power passes from the engine through a friction clutch
which is frequently operated with the same pedal as the transmission clutch. This, and an engaging mechanism,
allows the drive to the power take-off to be stopped and started as required, independently from the drive to the
wheels. Hence the driven machine may continue to operate and process the crop even though the tractor and
machine are not moving forward. This is a very convenient arrangement and a great advantage over older tractors
with a single clutch and especially over ground driven machines.

PTO speed is determined by engine speed, (with a fixed ratio 3 or 4:1) irrespective of travel speed (traction
transmission ratio). Power losses in the PTO drive are very small, usually less than 5%.

A "ground-speed" PTO may also be fitted (Fig. 1.1). Here the drive to the PTO shaft is connected to the drive to
the wheels    after    the traction transmission and hence the PTO speed changes as the traction transmission ratio is
changed. The ground speed PTO rotates slowly (a few revolutions per unit distance traveled) and may be used as a
replacement for a ground drive on machines such as seed drills where a    fixed    relationship between the movement
of the tractor and the function of the machine is important.

The two engaging mechanisms for the PTO drive are such that only one of these can be engaged at one time.

(c)     Hydraulic (oil) supply      

 Here oil under pressure from a hydraulic pump, continuously driven by the engine, is available to operate linear
actuators (cylinders, rams) usually for the purpose of controlling (raising and lowering)  implements, or driving
rotating actuators (motors). One such ram, in-built into the tractor, is used to raise the three-point linkage.

Power losses in the hydraulic system may be moderate but are accepted because this outlet is a flexible and very
convenient way of controlling machines and operating auxiliaries on the tractor and on attached machines.

The details of the design and operation of the components in the three tractor transmission systems are covered in
books on mechanical analysis and machine design. They will not be considered further in this book.
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Surface Tread  form

(a)
(b)
(c)
(d)
(e)

(f)

Hard surfaces such as roads
Normal agricultural work, dry soil
Soft, wet agricultural soils
Lawns, low sinkage is required
Dry soil, heavy loads as in
earthmoving
Saturated, puddled soils

Large area, shallow tread with 'high' pressure
Heavy, intermediate depth tread
Deep tread
Wide, low pressure
Tracks, as on a "crawler" tractor

Metal cage, with angled lugs, alone or as
extensions to normal tyres

Figure 1.4  Ground drive elements

(a) to (d) reproduced with permission of Goodyear Tyre Company
(e) reproduced with permission of Caterpillar of Australia, Ltd
(f) reproduced with permission of International Rice Research Institute
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1.3.3  Wheels

The tractor wheels and associated tyres have the function of supporting the tractor and of converting rotary motion
of the engine to linear motion of the tractor as a whole.  

The wheels must be chosen to:

(i) support the weight of the tractor (together with any transferred weight from attached implements) while
limiting the sinkage into the soil surface and the resultant rolling resistance.

 
(ii)  engage with the soil (or surface) and transmit the traction, braking and steering forces (reactions) while

limiting relative movement and the resultant slip / skid / side slip.

(iii) provide ground following ability together with some springing and shock absorption.

The important variables in relation to the tyres include:

(i) size (diameter and width) which determines their tractive capacity and rolling resistance.

(ii) strength, expressed in terms of ply rating, which in turn determines the pressure that can be used and hence
the weight that the tyre can carry; this in turn also determines the tractive capacity and the rolling
resistance.

(iii) tread pattern which, together with the surface characteristics, determines the engagement and / or contact
with the surface.

  

The losses in power at the wheel / surface interface are often great, particularly on soft surfaces (ie, their efficiency
is low), hence the power available at the tractor drawbar may be much less than the power of the engine. Hence
the choice of the tyres and the weight on them is crucial in determining the overall performance of the tractor.

Various types of wheels and / or tyres may be used on the tractor, depending mainly on the surface on which it is
working.  For the following conditions, the tyres or wheels indicated are recommended as shown in Figure 1.4.

1 . 4   S TUDYING TRACTOR PERFORMANCE

1.4.1 Need for study

Before beginning the study, it may be useful to consider those who have an interest in the subject and why they
need to study it.

(i) The designer wishes to predict whether the tractor being designed will achieve the design objectives He /
she will do this by means of traditional design procedures for mechanical elements such as the power train,
experience gained from measurement of the performance of other tractors and the application of the
performance prediction techniques explored in this book.    

(ii) Those who are advisers to the users including extension advisers and sales persons also need to understand
tractor performance. Their interest is not in design but in how to choose (in economic as well as physical
terms) a tractor from a range available to achieve a required work rate (or match other machines) and how to
set it up and operate it in the most efficient manner.

(iii) Users need to understand the basic aspects of tractor performance so that they can interact with their advisers
and work their tractors in an efficient manner.

(iv) Those who are responsible for providing services such as training, administration, safety and other
associated aspects to the above groups also need to understand tractor performance and so provide valid and
useful advice.

Given their different roles, their need for training material varies widely. This book will not satisfy all groups but
may help to provide an understanding of tractor performance and so assist each group in the preparation of
associated material needed to fulfil their roles.
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1.4.2 Approaches to the study

(a)      Theoretical / ideal   

The tractor, which is a machine that is comprised of various simple mechanical elements, can be analysed in
terms of their theory. This is presented in Chapter 2 and provides a basic understanding of the operation of the
tractor under ideal conditions. However operation of the tractor in the field indicates that this simple analysis is
inadequate to determine the limits of its performance as the drawbar load on it is increased, or to predict its
performance when operating on soft soils.

(b)      Practical / experimental   

Historically the study of tractor performance has been in practical, experimental terms. In this approach the tractor
is operated under described conditions and its performance measured and reported. A similar performance could be
expected from another tractor, of the same model when operated under similar conditions, or from a different make
of tractor if appropriate allowances were made for any differences, eg, the weight of the tractor or the engine
power.

Examination of the results of performance measurements made for tractors operating on soil shows that the
condition of the surface is the most significant factor determining their performance. We cannot compare different
tractors tested under such conditions because the effects of the inevitable differences in soil condition on the
performance are confounded with, and cannot be separated from, the actual differences between the tractors.  

Hence, as in other practical measurement approaches, we begin with the performance measured under ideal
conditions. This involves testing the engine on a dynamometer and / or the tractor on a hard surface such as a
concrete or bitumen road, ie, on a so called 'test track'.  Under these conditions we obtain the maximum or best
performance that is possible.

Then, if all tractors are tested on the same or similar surface, the surface effect is (at least partly) eliminated. The
conclusion from a comparison of such tests then is that tractors ranked in order of some performance parameter
(eg, maximum drawbar power or best fuel economy) as obtained on the test track will be the same rank order as if
they were tested in actual operating conditions, ie, on a field soil. This is the same logic as used when we
measure the strength of various steels in a testing machine and  hence rank the strength of beams made from
them.

The reports of formal tractor testing schemes (Nebraska, OECD, etc) and many other research papers are examples
of the practical / experimental approach.

Tractor performance as measured in this way is described in Chapter 3 and is satisfactory as far as it goes.
However it does not provide a fundamental understanding of the traction process, nor does it provide a basis for
the     prediction    of performance which is the basis of engineering design.

(c)     Theoretical / predictive   

In this approach we set up a theoretical model (based, like all theoretical work, on some empirical or experimental
data) of the way in which the wheels interact with the soil:
(i) in the vertical direction as it supports the vehicle.
(ii) in the horizontal direction as it generates the reaction to provide the drawbar pull.

The early work by Bekker (1956) and later work by Reece (1965-66 and 1967) and many others uses the standard
properties of the soil (cohesion and angle of internal friction) and an empirical deformation parameter to
characterize its strength and deformation properties respectively. These are used to model the generation of
shearing stresses within the contact area which are then integrated to give the total reaction of the soil and hence
the drawbar pull and power.  This is presented in Chapter 4, Sections 4.3 to 4.6.

This approach provides a good understanding of the traction processes and of the effect of the dimensional
characteristics of the wheel and the strength properties of the soil. However its application for field use is limited
because it involves the complex and time consuming, in-situ measurement of the three soil properties.
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(d)     Empirical / predictive   

This approach is predictive but is based entirely on empirical relationships that have been established between a
single soil parameter (together with the dimensions of the wheel) and the tractor performance (Wismer and Luth
(1974) . The easily measured parameter (cone index), represented by the force to push a cone into the soil  divided
by the cross sectional area of the cone, is a complex but ill-defined measure of soil strength and compressibility.

This is a rapid and versatile method of predicting the field performance of tractors. However again it does not
provide a basic understanding of the traction process but it does allow a rapid representation of the overall
performance as shown in Chapter 5.

1 .5  PREVIEW

The theory and explanation which follows in the later Chapters applies to the conventional rear-wheel drive tractor
irrespective of what form other features, such as the engine, transmission or steering, may take. With appropriate
modifications, as noted in the text, it may also apply to other forms such as the crawler and walking tractors.

In general it does not apply to the four-wheel drive type because with such a system, the drive is divided in an
unknown proportion between the front and rear axles in a way that depends on the stiffness of the respective drive
trains to the wheels. It also depends on the strength and stiffness of the soil in the soil / wheel contact patch
which in turn depends on the respective weights on these wheels.
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APPENDIX  I

LIST  OF  SYMBOLS

Symbol Definition Defining section

a distance from drawbar to implement wheels parallel to ground surface 6.4.3
a constant in normal stress distribution characteristic 4.7
b distance from drawbar to soil force on implement parallel to ground surface 6.4.3
b distance from drawbar to trailer wheels 6.4.4
b width of plate, tyre 4.3.2
c cohesion of soil 4.4.2
d depth of cultivation 7.5
d tyre diameter 5.3.1
d' constant in implement draught - speed characteristic 7.2.3
h tyre section height 5.3.1
h ratio drawbar height / centre of gravity height 6.5
i wheelslip 2.3.1
i' wheelslip at maximum tractive power 4.6.2
j deformation of soil parallel to soil surface 4.4.2
k shear deformation modulus of soil 4.4.2
k rate constant 5.3.2
kc, kφ sinkage moduli of soil 4.3.2
l length of plate, distance traveled by wheel 4.3.2

l length wheel / track contact with ground 4.3.2

m distance travelled by wheel 3.3.3
n number of revolutions of wheel 4.1.5
n sinkage exponent of soil 4.3.2
p plate, wheel  pressure on soil 4.3.2
q transmission  ratio 2.2.1
r wheel radius 6.3.1
t time period 3.2.3
w width of implement 7.5
x distance along track 4.4.4
x distance between the two axles, parallel to the ground surface (wheel base) 6.3.1
x' distance from rear axle to hitch point (or point of application of implement)

load) parallel to ground surface 6.4.1
x" distance between the two axles parallel to the ground surface (tractor raised) 6.3.1
xf distance from front axle to centre of gravity of tractor 6.3.1

xr distance from rear axle to centre of gravity of tractor 6.3.1

xh distance from axle to the handle (walking tractor) parallel to the ground surface 6.4.4

x'r horizontal distance from rear axle to weight (tractor raised) 6.3.1

y distance from rear axle to hitch point (or point of application of implement load),
perpendicular to the ground surface 6.4.1

y' distance from ground contact point to hitch point (or point of application of
implement  load), perpendicular to the ground surface 6.4.1

y" height of front axle (tractor raised) 6.3.1
yg distance from rear axle to centre of gravity for tractor perpendicular to

ground surface 6.3.1
yt distance from axle to centre of gravity for trailer perpendicular to ground surface 6.4.4
z deformation (sinkage) of soil perpendicular to the soil surface 4.3.2
z distance from ground surface to point of application of soil force perpendicular

to the ground surface 6.4.3
z' slope distance from rear axle to weight (tractor raised) 6.3.1
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A area of wheel, track contact with ground 4.4.3
A constant 5.2
B constant 5.2
C calorific value of fuel 2.4.1
CI cone index 5.3.1
D wheel diameter / draught 2.2.1
D implement draught 7.2.2
F lift force on implement drawbar perpendicular to the ground surface 6.4.4
FC fuel consumption rate 3.2.3
H tractive force / soil reaction parallel to the ground surface 2.2.2
M mobility number 5.3.1
M moment on wheel / chassis 6.4.1
N rotational speed 2.2.1
N number of revolutions 4.1.5
P drawbar pull, weight of attached implement 2.2.1
Q power 2.2.3
Q' tractive power 4.6.2
R rolling resistance 2.3.2
R weight on trailer wheels 6.4.4
S shear stress 4.4.2
S soil force 6.4.3
SFC specific fuel consumption 3.2.1
T torque 2.2.2
T force on implement at tractor drawbar, perpendicular to the ground surface 6.4.3
U force on handles, perpendicular to slope 6.4.4
V travel speed 2.2.1
V dynamic weight on wheels 6.4.1
Vs slip velocity of wheel relative to surface 2.3.3
V' dynamic weight on implement wheels 6.4.4
W weight of tractor 6.3.1
W static weight on wheels 6.3.1
W' weight of trailed implement, trailer 6.4.1
W'f weight on front wheels (tractor raised) 6.3.1
X slip function 4.4.4

α angle of slope of ground surface 6.4.1
β angle 6.3.1
δ tyre deflection 5.3.1
φ angle of internal friction 4.4.2
η efficiency 2.4.1
θ angle of draught / drawbar pull / implement load to ground surface 6.4.1
ρ coefficient of rolling resistance 4.3.3
σ normal stress

ψ tractive coefficient  = 
drawbar pull

weight on driving wheels
 3.3.3

ψ' gross tractive coefficient  =  
tractive force

weight on wheel
 4.4.3

Subscripts
d drawbar / down
e engine
f front wheel
g centre of gravity
h handles
n transmissio   n
o theoretical, ideal, zero load, overall, zero speed
r rear wheel
s static, slip
t trailer, traction
u up
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APPENDIX  II

           DIMENSIONAL  DATA  FOR  FARMLAND  TRACTOR

     Values for

Farmland Local
      FEATURE Symbol tractor tractor

Weights
kg /  kN kg /  kN

Total  weight W 2850 / 27.9
Weight on rear wheels (on horizontal ground) Wr 2030 / 19.9
Weight on front wheels (on horizontal ground) Wf 820 / 8.0

Dimensions metre metre
Wheel base (front to rear axle) x 1.88
Rear axle to C of G (parallel to ground) xr 0.54
Front axle to C of G (parallel to ground) xf 1.34
Rear axle to C of G (perpendicular to ground) yg 0.13

Ground contact to drawbar (parallel to ground) x' 0.60
Ground contact to drawbar (perpendicular to ground) y' 0.45

Rear axle to drawbar (perpendicular to ground) y 0.185
Rear wheel rolling radius (on 14.9 x 28 tyres) r 0.635

Overall transmission ratio q Ratio
Gear 1 221.1

Gear 2 170.0

Gear 3 139.5

Gear4 108.9

Gear 5 85.6

Gear 6 67.4
Gear 7 47.3

Gear 8 37.1

Gear 9 22.0

Gear 10 17.3

Rev 1 72.3
Rev 2 56.9



Index

Air charge
Air induction, engine

3.3
1.4, 3.3

Angle of internal friction, soil 4.14

Braked wheel 4.3

Centre of gravity 6.5
Chassis mechanics 6.1
Cohesion, soil 4.14

Cone index 5.4

Differential 1.6
Draught, implement 7.1, 7.5
Drawbar performance 3.11, 5.12
Drawbar power envelope 3.13
Drawbar power:

Calculated
Measured
Predicted

2.3, 3.13
2.3
3.11
4.24, 4.28, 5.8, 5.16

Drawbar pull
Calculated
Measured
Predicted

2.3, 3.11, 4.22
2.3
3.11
4.22, 5.8, 5.12, 5.16

Drawbar pull envelope 3.10, 4.24, 5.12,
Driven wheel 4.3

Efficiency
Engine
Overall
Tractive
Transmission

2.9
2.9
2.8
2.8

Engine
Power
Speed
Torque
Efficiency

1.4
2.3, 3.3, 3.5, 7.11
3.3, 3.5
2.3, 3.3
2.9

Engine operational cycle 1.4
Engine performance

Measured
Predicted

3.3
5.1

Engine performance modeling 5.1
Engine power envelope 3.10, 3.12
Engine speed control 1.4

Farmland tractor details Appendix II
Fuel consumption

Engine
Drawbar

3.7
3.13

Full fuel range 3.4
Fully mounted hitch 6.3, 6.23
Functional performance 1.2

Gear box 1.6
Governed range 3.4
Governor 3.3
Gross tractive coefficient 4.16
Ground drive elements 1.2



Hitch systems 6.3
Hitch systems – comparison

Trailed
Semi-mounted
Fully-mounted

6.26
6.1, 6.26
6.1, 6.26
6.1, 6.26

Ideal performance 2.4
Implement

Draught
Unit/ specific draught
Hitching
Power
Characteristic

7.1, 7.5
7.2
6.1
7.3
7.3

Instability - longitudinal 6.8, 6.36

Matching tractor and implement 7.1, 7.10, 7.12
Mobility number 5.4

Normal stress 4.14

Optimum tractor-implement performance 7.5, 7.10
Overall efficiency 2.9

Performance
Empirical / predictive
Practical / experimental
Theoretical / ideal
Theoretical / predictive

1.12, 4.6
1.11, 3.1
1.11, 2.1
1.11, 4.6

Performance envelope 2.5, 3.11, 3.13, 7.14, 5.12,5.16
Plate sinkage test 4.8
Power distribution 5.14
Power loss 2.7, 5.14

Power outlets 1.4
Power take-off 1.8, 6.31
Power train 1.3

Rigid wheel 4.12
Rolling radius 4.1
Rolling resistance

Theoretical
Measurement
Empirical

4.1, 6.15
4.8
4.14
5.6

Rolling resistance coefficient 4.12, 5.6

Self propelled wheel 4.3, 4.6
Semi-mounted hitch 6.3, 6.21
Soft wheel 4.12
Soil

Cohesion 4.14
Friction, angle of internal 4.14

Soil shear 4.14
Deformation modulus 4.14

Soil sinkage
Exponent 4.6
Modulus 4.6

Soil, cone index 5.4
Specific fuel consumption

Engine
Drawbar

3.7
3.13, 5.16



Three point linkage 6.3, 6.23
Torque ‘back up’ 3.5
Towed wheel 4.3
Towing force 4.3
Tractive coefficient 2.10, 3.14, 4.16, 5.6
Tractive efficiency

Measured
Predicted

2.8, 3.14, 7.11
2.8
5.10, 5.16

Tractive force
Ideal
Predicted

2.3, 4.6
2.3
4.14

Tractive performance
Theoretical
Modeling

4.6,
4.14
5.2

Tractor – implement matching 7.1
Tractor operation 7.14
Tractor performance, justification 1.10
Tractor testing 3.1
Trailed hitch 6.1, 6.33
Trailer, PTO driven 6.31
Transmission

Ratio
1.6
2.1

Transmission efficiency 2.8
Travel speed 2.1, 2.7, 3.11, 4.1
Two-wheel (walking) tractor 1.8, 6.28
Tyres 1.10

Walking (two wheel) tractor 1.8, 6.28
Weight transfer

Trailed
Semi-mounted
Fully-mounted

6.8, 6.11, 6.15, 6.26
6.21
6.21
6.23

Wheel, operational state
Braked
Driven
Self propelled
Towed

4.3
4.3
4.3
4.3
4.3

Wheel, performance
Power
Speed
Torque

2.7
2.1
2.3

Wheel, type
Tractor
Soft
Rigid

2.1
1.10
4.12
4.12

Wheelslip
Optimum
Function
Measurement

2.7, 3.14, 4.1, 4.4, 4.20
4.26
4.22
4.4
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CHAPTER  2

TRACTOR  MECHANICS

2.1   INTRODUCTION

The tractor is a machine and the application of the general principles of mechanics to it provides a simple but
fundamental understanding of its operation and ideal performance. The actual performance will be less than this,
and may be much less, mainly because of the losses which occur at the wheel / ground contact surface.

In a similar way to other engineering disciplines, we can define the elements or components of the tractor in
terms of general mechanics without needing to know their detailed form.  Thus the engine (power source) can be
represented in terms of its torque and speed without having to specify its type (thermodynamic or electrical), its
operating principle (internal or external combustion), its operating cycle (two or four stroke) or its fuel source
(diesel or petrol (gasoline)). Similarly the transmission system can be expressed in terms of the transmission
ratio without specifying its form or operating principle (mechanical (gears, chains, belts), hydrostatic (fluid
pressure) etc).

We can thus separate the application of the principles of mechanics to the tractor from the particular forms of the
mechanisms that appear in the particular tractor that we see in the laboratory or field.

2.2   IDEAL ANALYSIS (without losses)

Consider a tractor operating on a firm surface as shown in Figure 2.1. Although the tractor is moving, the
equations of equilibrium can be applied to it because it is assumed that there is no acceleration.  

Consider the engine running at a rotational speed Ne driving the drive wheels without losses through a

transmission with an overall ratio of q.  As a consequence of the reduction in speed by a factor of 1/q, there is a
corresponding increase in torque by a factor of q. These values correspond to the `velocity ratio´ and the
`mechanical advantage´ from elementary physics.

2.2.1 Speed analysis

For the tractor as shown in Figure 2.1(a):

Drive wheel diameter = D

Engine speed  = Ne

Overall transmission ratio      q   =  
Engine speed Ne

Drive wheel speed Nw
 

Drive wheel rotational speed   Nw  =  
Ne
q

 

If we assume that there are no losses in motion due to slip between the wheel and the surface:

Travel speed, Vo =  Linear speed of wheels

=   π  D Nw 

=    
π  D  N e

q
(2.1)

This analysis shows that the travel speed depends directly on the engine speed and inversely on the gear ratio.
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Figure 2.1 Mechanics of the tractor under ideal conditions
(a) Speed analysis; (b) Torque / force analysis
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2.2.2 Torque / force analysis

For the tractor as shown in Figure 2.1(b):

Engine torque =  Te

Drive wheel torque, Tw  =  q Te 

Equilibrium requires that this torque is equal and opposite to the moment of the soil reaction, H on the wheel:

H  
D
2

 =  Tw  = q Te

      H =  
2 q Te

D
 

If we assume that there are no other horizontal external forces acting (such as rolling resistance), equilibrium also
requires that:

     Drawbar pull,  P =  Soil reaction, H

      P =  
2 q Te

D
 (2.2)

This analysis shows that the drawbar pull depends directly on the torque generated by the engine and on the gear
ratio. This assumes that the wheel / ground contact can generate the reaction to P.

2.2.3 Power analysis

Engine power, Qe =   2π Te Ne (2.3)

Drawbar power, Qd =   Drawbar pull . travel  speed

=  P . Vo (2.4)

=  
2 q Te

D
   .  

π  D N e

q

=  2π Te Ne

=   Engine power

 Thus, if we neglect losses in forward motion due to wheelslip and in drawbar pull due to rolling resistance, all
of the power from the engine is available at the drawbar.

The above represents the ideal situation which might apply approximately to the tractor working on hard surfaces
with small drawbar pulls and small wheelslips.

However, in many agricultural situations, wheelslip is significant, hence the travel speed of the tractor will be
less, and may be much less, than the ideal value calculated above.  Also, much of the torque on the rear wheels
goes to drive the tractor forward against the rolling resistance of both the driving and the rolling wheels.  Hence
the drawbar pull will be less, and may be much less, than the ideal value calculated above.

The actual tractive performance of the tractor in various gears on two types of surface, viz., a hard surface (firm,
dry soil or road) and a soft surface (cultivated soil), is considered in Chapters 3 and 4, respectively.
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    Engine     Ideal tractor drawbar performance in gears     Maximum power 
performance envelope

Speed Torque    Drawbar  Pull,  kN    Travel speed, km/hr  
rpm Nm Gear 3 Gear 5 Gear 7 Gear 3 Gear 5 Gear 7 Drawbar Travel

Gear ratio-> 139.5 85.6 47.3 139.5 85.6 47.3 Pull Speed
2390 0 0.00 0.00 0.00 4.07 6.63 11.99 kN km/hr
2370 40 8.86 5.43 3.00 4.03 6.57 11.89 6.0 20.10
2350 80 17.71 10.87 6.01 4.00 6.52 11.79 7.0 17.23
2325 120 26.57 16.30 9.01 3.96 6.45 11.67 8.0 15.08  
2250 142 31.51 19.33 10.68 3.83 6.24 11.29 10.0 12.06  
1730 161 35.65 21.88 12.09 2.94 4.80 8.68 12.0 10.05
1300 173 38.31 23.51 12.99 2.21 3.61 6.52 14.0 8.61
1000 171 37.86 23.23 12.84 1.70 2.77 5.02 16.0 7.54

  18.0 6.70
   20.0 6.03
   25.0 4.82

30.0 4.02
35.0 3.45
40.0 3.02

  

 

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40

Drawbar pull, kN

Gear 7

Gear 5

Maximum power envelope
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(c)

(a)

Figure 2.2: Data for (a) ideal performance of Farmland tractor in 3 gears at maximum governor setting;
                            (b) maximum power envelope; (c) plot of these data

(b)
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Problem 2.1

 For a local tractor (of any type):
(a) Measure the transmission ratios in each gear by (securely) raising the drive wheels and either:

(i) turning the engine by hand and counting revolutions of engine and wheels
(ii) running the engine and measuring the speed of engine and  drive wheels with a tachometer

(b) Check your answers by:
(i) taking appropriate measurements of the transmission elements - counting gear teeth, measuring pulley 
or sprocket diameters etc
(ii) driving the tractor on a hard surface and measuring the travel speed, and rolling radius
(iii) inspection of the owner's manual  or parts book, if available.

2.2.4 Ideal performance graphs

Figure 2.2 shows the torque (Nm)  - engine speed (rpm) data from an actual test on the engine from the
hypothetical 'Farmland' tractor 1. It also shows the    ideal    performance (travel speed (km/hr) versus drawbar pull
(kN)) graphs for the Farmland tractor in 3 gears based on the Equations 2.1 and 2.2 and data from Table 1,
Appendix I.

The shape of these graphs will be discussed more fully in Chapter 3.

Problem 2.2

Plot similar graphs for the other gears of  the Farmland tractor.

2.2.5 Performance envelopes

The graphs shown in Figure 2.2 and others to be plotted in Problem 2.2  give the characteristic graphs for the
tractor with discrete gears. Such gears result in `steps´ in the curves defining areas in which the tractor can work
and other areas between the steps in which the engine could work but which are unavailable because gears with
appropriate ratios are not fitted to the tractor.

If the tractor were fitted with a stepless or infinitely variable transmission, the ratio could be varied to keep the
engine operating at maximum power. This would give the (ideal) performance `envelope´ or boundary within
which the tractor must work. This is also shown in Figure 2.2 (c) for the constant maximum power of the
engine (33.6kW); it is plotted for arbitrarily  chosen values of  the drawbar pull and calculated travel speeds
shown in Figure 2.2(b).  

2.2.6   Conclusion

The simple analysis given above suggests that the actual performance of the tractor will reflect the performance
of the engine:
(i) travel speed is determined by engine speed
(ii) drawbar pull determines engine torque
(iii)    both travel speed and torque also depend on transmission ratio.

Further, the travel speed - drawbar pull performance is limited by the maximum engine power envelope which
appears as an hyperbola on the travel speed / drawbar pull graph space.

As shown later in Chapter 3, the actual travel speed - drawbar pull graphs and the corresponding envelope will be
different because losses in travel speed due to wheelslip, in drawbar pull due to rolling resistance and in power due
to both.

                                    
1 Test data have been extracted from Australian Tractor Test Report No 78 (Brown and Baillie, 1973). Other
numerical data for this tractor, which are used in this book, have been extracted and are presented in  Appendix II.
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2 .3   A NALYSIS WITH LOSSES

Consider a tractor again operating on a firm surface as shown in Figure 2.3. Although the tractor is again
moving, the equations of equilibrium can be applied to it because it is assumed that there is no acceleration.  

2.3.1 Speed analysis

The tractor is now moving with a speed V (less than the ideal travel speed, Vo  above), Figure 2.3(a).

We can then define wheelslip as:

Wheelslip, i  = 
Vo- V

Vo  (2.5)

Where, Vo = theoretical travel speed (as in Equation 2.1 above)

 V = actual travel speed

Substituting for Vo from Equation 2.1

V =   Vo (1- i)  =  
π  D N e

q
 (1- i) (2.6)

2.3.2 Force analysis

A rolling resistance force (R) which is assumed to act horizontally on the wheel at the wheel / ground contact
patch, opposes motion of the tractor, Figure 2.3(b).

For equilibrium of the external  horizontal forces acting on the tractor:

H   =   P  +  R (2.7)

2.3.3 Power analysis

Considering power transmission at the wheels.

Output power = Input power - Power loss

ie, Drawbar power = Wheel power - Power loss

Hence,  Power loss = Wheel power  -  Drawbar power

= 2π Tw Nw  -   P V

= 2π  H 
D

2

Vo

π  D
 -  P V  = H Vo  -  P V

= H Vo  -  (H - R) V    = H (Vo - V)  +  R V

= H.Vo  i  +  R V     = H Vs  +  R V (2.8)

Here  Vs is the slip velocity, ie, the velocity of the wheel relative to the surface at the surface / wheel contact.

We can identify the terms in this equation as:

Total power loss    =   Power loss due to slip  +  Power loss due to rolling resistance

Minimizing the total power loss thus is matter of minimizing the    sum     of the loss due to slip and that due to
rolling resistance. This is a complex problem when it is realized, for example, that the effect of weight on the
driving wheels is to    decrease    the slip loss and    increase    rolling resistance loss. This will be discussed further in
Chapter 4.
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2.4   OTHER MEASURES OF PERFORMANCE

2.4.1 Efficiency

(a)     Tractive       efficiency   

We define tractive efficiency,   

η
t

=
Output power
 Input power

 =
Drawbar power
Wheel power

 

=  
P.V

H.Vo
    =

(H - R)
H

  (1 - i)    (2.9)

=   (1 -  
R
H

 )  (1 - i)  

=
P

(P + R)
  (1 - i) (2.10)

 The tractive efficiency that appears here contains two terms:

(i)
P

(P+R)
   which represents a ‘force’ efficiency; thus when there is no rolling resistance (R = 0) this factor 

in the tractive efficiency = 1.

(ii) (1- i) which represents a ‘speed’ efficiency; again when there is no wheelslip (i = 0), this factor in the 
tractive efficiency  = 1.

It might be thought that the tractive efficiency, which is one of the most important measures of tractor
performance, could be determined on the basis of Equation 2.10. However, the major difficulty with this approach
is that, in practice, it is not possible to determine a relationship between rolling resistance and slip or, in general,
to determine rolling resistance when a wheel is undergoing a slip.

Hence, it is necessary to determine the tractive efficiency by measuring drawbar and wheel power directly by
measuring:
(i)   drawbar pull, P, with a tension load (force) cell between the tractor and a load vehicle or implement
(ii)  travel speed, V, by timing over a known distance
(iii) wheel torque, Tw , with a torque load cell in the transmission to the driving wheels

(iv) wheel speed, Nw , by counting wheel revolutions over a known  time period

Then  tractive efficiency,   η 
t

=    
P V

2 π Tw Nw
(2.11)

 (b)     Transmission       efficiency

We can define transmission efficiency:

ηr =  
Power to wheels

Power from engine
  =  

2 π  Tw N w

2 π  Te  N e
(2.12)    

The maximum transmission efficiency is dependent on the design and the quality of the transmission elements. In
a geared transmission there is little or no loss in velocity,  Nw = Ne / q .

Hence any losses are due to a loss in torque; thus  Tw < q . Te

For good quality gears  the maximum efficiency is about 98% per pair of gears; hence with, say, 3 pairs of gears
in the change transmission and another 2 pairs in the differential / final drive, the maximum efficiency will be
(0.98)^5 =  90%. Little improvement in efficiency can be obtained by more accurate or elaborate gearing; other
types of transmission will be no more efficient.
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(c)     Engine       efficienc   y

We can define engine efficiency:

ηε  =   
Power from engine

 Power in fuel
   =   

2 π T e Ne

1000 FC C
(2.13)

where  FC = fuel consumption rate, kg/min
 C = calorific value of the fuel, kJ/kg

The maximum value for engine efficiency is dependent on and strictly limited by the thermodynamics of the
engine processes. A maximum value of about 35% for a diesel engine can be expected; other types of engine
will, in general, be less efficient.

(d)     Overall       efficiency   

We can also define the overall efficiency for the tractor:

ηο =    
Drawbar power
 Fuel power

 

=   
Engine power
 Fuel power

   .  Wheel power
 Engine power

   . Drawbar power
 Wheel power

 

=    Engine efficiency  .  Transmission efficiency   .  Tractive efficiency  

= ητ  . ηρ  .  ηε (2.14)

Consider typical maximum values for these variables:

ηο = 0.3  x  0.90  x  0.75

= 20 %

Because the maximum tractive efficiency is low and highly variable and the other efficiencies are high
(transmission) or strictly limited (engine), any significant increase in the overall efficiency of tractor performance
will be achieved by increasing the    tractive    efficiency. Research into an understanding of the traction process and
into more efficient traction devices is directed to this end.
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2.4.2  Tractive coefficient  (pull - weight ratio)

As will be shown later, the performance of a tractor depends to a significant degree on its weight and, in
particular, on the weight on the driving wheels. It is therefore useful to define a non-dimensional drawbar pull -
weight ratio termed:

Tractive coefficient,  ψ =   Drawbar pull
Weight on driving wheels

 (2.15)

The tractive coefficient is a number which characterizes the interaction between the wheel and the surface in an
analogous way to which coefficient of (sliding) friction characterizes the interaction between one body sliding on
another. Where a different wheel and surface may be considered similar to those for which the tractive coefficient
is known, then for the same wheelslip:

Drawbar pull = Tractive coefficient  x  weight on wheel

Where a tractor operates on a slope the tractive coefficient should logically be based on the total force parallel to
the ground, ie, on the drawbar pull plus the component of the weight of the tractor down the slope.

Where a four-wheel tractor is considered, and with other tractors also, the weight used may be the total weight on
all wheels. In quoting values of tractive coefficient, it is therefore necessary to state which weight has been used.

Problem 2.3

Estimate the maximum pull - (total) weight ratio for some local traction devices, eg, tractor, locomotive, draught
animal or human.

2 . 5  S UMMARY

                            
                        TRACTOR  PERFORMANCE  PARAMETERS

Parameter Engine Transmission Wheels

Input force
  * Force conversion ratio

Combustion pressure
Variable with rotation

Engine torque, Te
Gear ratio, q

Wheel torque, Tw
Force radius

  * Theoretical force  - Engine torque x gear ratio Tractive force, H
  * Force losses Mechanical friction Mechanical friction Rolling resistance, R
Output force Engine torque, Te Wheel torque, Tw Drawbar pull, P

Input velocity
  * Velocity conversion ratio

Piston velocity
Variable with rotation

Engine speed, Ne
Gear ratio, q

Wheel speed, Nw
Rolling radius

  * Theoretical output velocity Engine speed, Ne Engine speed / gear ratio Wheel linear speed, Vo
  * Velocity losses Nil Nil Wheelslip, i
Output velocity Engine speed, Ne Wheel speed, Nw Travel speed, V

Input  power Fuel power Engine power, Qe Wheel power, Qw
  * Theoretical output  power   -   - Tractive power, Qt
Output power Engine power, Qe Wheel power, Qw Drawbar power, Qd

Input/output efficiency Fuel efficiency, ηf Transmission efficiency,ηr Tractive efficiency, ηt

Table 2.1  Summary of tractor performance parameters (Parkhill, Pers. comm)

2 .6  REFERENCES
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CHAPTER  3

TRACTOR  PERFORMANCE  ON  A  FIRM  SURFACE

3.1   INTRODUCTION

We begin the study of tractor performance in detail by considering the performance of a conventional two-wheel
drive tractor when operating on a firm surface.

As shown in Chapter 2 the ideal performance of a tractor reflects the performance of the engine and the
transmission.

(i) The travel speed depends directly on the engine speed, inversely on the transmission ratio and ,when speed
losses are considered, on the wheelslip.

(ii)  The drawbar pull depends directly on the engine torque, on the transmission ratio and, when force losses
are considered, on the rolling resistance.

(iii) The drawbar power directly on the engine power and the losses through the transmission and at the wheel /
ground surface as in (i) and (ii) above.

The actual performance of tractors has traditionally been determined by measurement during practical /
experimental tests of their engines and  the complete tractor operating under controlled and repeatable conditions
as discussed in Section 1.4.2 (b) above.

In Chapter 3 we consider a conventional rear wheel drive tractor driven by a diesel engine through a transmission
with discrete gears. The tractor was set up with tyres (size and weight) and other conditions as recommended by
the manufacturer. It was then operated to explore the two variables that are open to choice by the operator, viz,
governor setting and gear selected.

The testing is done:  

(i)  with the engine driving a rotary dynamometer or brake. Here the speed of the engine varies with the torque
load on it for various settings of the governor as determined by the operator. The fuel consumption and
efficiency of the engine are also measures of its performance.

(ii)  with the tractor being operated on a firm surface. Here the travel speed varies as the drawbar load is varied.
The transmission ratio (the gear), as selected by the operator, influences the performance because it
determines the condition  under which the draught load is matched to the output of the engine. The
efficiency of the transmission which is high and nearly constant is not a significant variable.

The example given is for the hypothetical 'Farmland' tractor based on a selection of results from an Australian
Tractor Test Report No 78 (Brown and Baillie, 1973). Other data which are used in this book, have been extracted
and are presented in  Table 1, Appendix II.

The performance of the tractor is presented in graphical form. A detailed discussion of this technique is presented
in Vasey and Baillie (1969).  

The following discussion is generally applicable to tractors with governed diesel engines (since these are now
most commonly used) although most of the principles would apply to the performance of tractors with other
forms of engine. Also, while the discussion is given mainly in terms of a four-wheel tractor, the same principles
would generally apply to a two-wheel tractor (Pudjiono and Macmillan, 1995).
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Figure 3.1: Variation in air charge and torque also air consumption rate and power with engine
speed. Reproduced from data in Goulburn and Brown (1993) with permission by Mechanical

Engineering Publications / Professional Engineering Publishing Ltd.
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Figure 3.2: Variation of engine torque and power with speed for the Farmland 
tractor engine at maximum governor setting; data from Figure 2.2. 
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3.2  ENGINE PERFORMANCE

3.2.1 General

The detailed operation and performance of the diesel engine is presented in many text books, hence the discussion
here will be limited to its input and output performance characteristics.

(a)     Output   

This is transmitted from the crankshaft in a rotational form, hence it is measured in terms of:
(i)  torque  -  rotational effort, Nm
(ii)  speed  -  rotational motion, rad/sec or rpm

The output will be represented by the way in which the torque developed    by       the       engine    (equals torque load
applied    to       the       engine   ) varies with its (rotational) speed.

(b)     Input   

This is in the form of:
(i) air drawn into the engine acting as a pump (air charge)
(ii) fuel metered into the air:

* already in the cylinders for diesel engine
* by the carburetor during its passage to cylinders for a spark ignition engine

The maximum output of the engine is effectively determined by the maximum input, the limiting factor being
the quantity of air (charge) drawn into the cylinder on each stroke (Goulburn and Brown, 1993).  This in turn will
depend on:
(i) the size of the cylinders
(ii) the restriction offered by the air passages, valves, etc
(iii) the time available for the air to be drawn in

For a given engine:
(i) at high speed, the time available for the air to enter the cylinders is so short that the air charge is reduced;
(ii) at low speed, the time available for the air to enter the cylinders is longer but heating of the air in the

cylinder reduces the charge

Hence, for a given engine, there is an optimum speed at which most air is drawn in; at both higher and lower
speeds, less air enters (Figure 3.1).

Because the output (torque) from the engine depends on input (air), the     maximum       output    (torque) coincides
approximately with     maximum       air       charge   .  Strictly, this statement is only true for a fixed air / fuel ratio, as
determined by the amount of fuel which can be effectively burnt in the air available.  More fuel will give slightly
greater output torque, but most of the extra fuel will be wasted and will appear as black, un-burnt carbon in the
exhaust gas.

3.2.2  Output

(a)      Torque       -       speed   

The torque output represents the magnitude of the rotational effort developed by the engine against a torque load
applied to it. The torque-speed graph for an un-governed engine shows a very wide range of speed as the torque
load is varied; see Figure 3.1.

In operation the load on a tractor and hence the torque on the engine varies widely and in an unpredictable way,
which would cause the tractor to slow down and speed up according to the load. This would be unsuitable,
particularly for many PTO driven machines such as cereal harvesters or forage mowers where a constant PTO
speed is needed.

To overcome this problem and to reduce the speed variation with load, the engine is fitted with a governor. This
is a device which:
(i) can be set by the operator to give different engine speeds
(ii) automatically increases the fuel to the engine as the load on it increases, to keep its speed approximately

constant
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For any given governor setting, there are two ranges in which the engine can operate (Figure 3.2).

(i) In the "governed range(s)", where the engine runs under control of the governor. As the torque load varies,
so fuel is varied to keep the speed approximately constant as shown by the near vertical line. Only the
maximum governor setting is shown in Figure 3.2; lines for other governor settings are shown in
Figure 3.4.

(ii) In the ‘full-fuel range’, where the governor is not controlling the fuel supply. The fuel system supplies a
fixed maximum quantity of fuel per stroke (as set by the manufacturer); the speed varies widely (from
2250 to 1000 rpm) as shown by the dotted line in Figure 3.2.

The governed range is where the tractor is normally operated; the load and, as shown later, particularly the gear
ratio are chosen to cause the engine to operate in this range.  Thus the speed range is determined by the setting of
the governor by the operator;  within that range, the speed is automatically set by the governor.

Maximum torque for a diesel engine is reached at quite a low speed.  The increase in torque as the engine slows
down in the full fuel range (sometimes called "torque back-up") is a reserve of effort;  it indicates the ability of
the engine to increase its torque output, above that at maximum power, prior to stalling (stopping). This feature
appears in the drawbar characteristics of the tractor as discussed in Section 3.3.1 and following.

(b)      Power - speed   

While the torque represents a fundamental performance parameter for the engine, the operator is usually more
interested in the rate at which that torque effort will do work, ie, the power of the engine.

From Equation 2.3

Engine power(1), Qe  =   2π . Engine torque Te . Engine speed  Ne

For each point on and under the torque - speed curve, there is a corresponding point on and under the power -
speed curve (Fig. 3.2). As the load on the engine is increased, the condition where the governor first provides the
maximum fuel rate, gives maximum power for that governor setting.  At higher torques and lower speeds in the
full fuel range the power is less.

The output from the PTO also reflects that of the engine. However Figure 3.2 shows only one value of the
power output from the PTO when it is operating at the (arbitrarily) defined `standard PTO speed´ of 540 rpm. At
this speed the engine in the Farmland tractor is rotating at 1810 rpm. From this it will be seen that greater (or
lesser) maximum power can be taken from the PTO but they will be at a speed greater (or less) than 540 rpm.

(c)     Summary   

As we increase the torque load on the engine:
(i) in the governed ranges, the torque and power increase and the speed decreases slightly until the power

reaches a maximum
(ii) in the full-fuel range, any further increase in the torque load causes:

* a small increase in the torque
* a large decrease in the speed
* a resultant decrease in the power

(iii) at maximum torque the engine will stall.

Varying the governor setting:
(i) varies the governed range of speed in which the engine runs
(ii) varies the maximum power developed by the engine
(iii) does not vary the maximum torque developed by the engine

The governed ranges are of most interest to the operator because it is in these that the engine operates most of
the time.

                                    
(1) Engine power is often termed `brake´ power (measured by a `brake´ or dynamometer) or `shaft´ power
(available at the output `shaft´).
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3.2.3  Input

(a)       Fuel consumption   

The other factor of interest in engine performance is the input as represented by the fuel consumption (strictly
fuel consumption rate) and how this varies with the output as represented by the power in the governed range.

Fuel consumption (FC) = 
Fuel used F
Time taken t

   (3.1)

It is quoted  in kg/hr or L/hr and is usually plotted against power.

As seen in Figure 3.3 the fuel consumption (above that required to keep the engine running at zero power) is
approximately proportional to power.  The graph shown applies to maximum governor setting; lower governor
settings would give similar, but slightly lower fuel consumption - power graphs.

(b)     Specific fuel consumption rate

The fuel consumption is a suitable parameter for representing the input performance of  one engine but does not
allow a comparison of engines of different size.  To do that, it is convenient to calculate the fuel consumption
(rate) per kW of power developed by the engine.  Hence we define:

Specific fuel consumption (SFC) =   
Fuel consumption FC

Engine power Qe 
     g/kWhr  (3.2)

Specific fuel consumption (sometimes termed fuel economy) is also usually plotted against engine power as also
shown in  Figure 3.3; low values signify good economy, ie, low rate of fuel consumption per unit power
developed.

Figure 3.3 gives the specific fuel consumption at maximum governor setting; lower governor settings would
give similar, but usually slightly lower, specific fuel consumption - power graphs.

At each point on and under the power-speed graph, we can calculate a specific fuel consumption; if this is plotted
perpendicular to the page we obtain a surface representing the three important aspects of the engine performance
on one graph, viz, speed, power and specific fuel consumption. Lines of equal specific fuel consumption are
shown as contours on Figure 3.4 (a). A model of the specific fuel consumption, here plotted on a torque - speed
base, is shown (for a different tractor) in Figure 3.4(b).  

The specific fuel consumption is generally lowest at 80 - 90% of maximum power at any governor setting.
Hence, leaving aside other considerations discussed later, it would be desirable, from an economic point of view,
to load the engine so that its operating point was in this region. The absolute lowest specific fuel consumption
usually occurs at an intermediate governor setting.

Problem 3.1

An engine rotates at 2100 rpm and develops a torque of  79 Nm; it uses 1.17 kg of fuel in 15 min.
Calculate the power it develops, its fuel consumption and specific fuel consumption.
Answer:

Q = 2πNT = 
2π x 2100 x 79

60
= 17.4 kW

FC = 
F
t
     = 

1.17
0.25

    = 4.68 kg/hr

SFC = 
FC
Q

    = 
4.68
17.4

    = 269 g/kWhr
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Figure 3.5 Schematic of wood saw driven from PTO of Farmland tractor; refer Problem 3.4 
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Problem 3.2

 Using data for the Farmland tractor engine from Figures  3.2, 3.3 and 3.4(a):
(i)  What is the maximum power available at 2000 rpm? Answer: 31.5 kW
(ii) What is the power available at maximum torque?  Answer: 22.5 kW
(iii)  What are the FC and SFC at 25kW and maximum governor setting?  Answer: 6.8 kg/hr; 270 g/kWhr
(iv)  What are the  SFC and FC at 15kW and 1500 rpm?

Answers: SFC = 245 g/kWhr   (interpolated between contours)
          FC   = 245 x 15 = 3.7 kg/hr

(v)  What is the best SFC for a no-load speed of 2040 rpm?  Answer: 250 g/kWhr
(vi) What is the FC and SFC when the PTO is operating at 540rpm and maximum power?

Answers: SFC = 250 g/kWhr; FC = 250 x 28 =7 kg/hr

Problem 3.3

Using data for the Farmland tractor engine from Figure 3.2
(i) What is the speed of the PTO when the engine is rotating at its maximum speed and power?

Answer: PTO speed  = 540  
2250
1810

    = 670 rpm

(ii) Estimate the maximum power available at the PTO for maximum engine speed.
Answer: 31.5 kW

(iii) At what speed should the engine rotate to give a PTO speed of 600 rpm?

Answer: PTO speed = 1810  
600
540

    = 2010 rpm

(iv) Estimate the efficiency of the PTO.

Answer: PTO efficiency =  
28
30

    100 = 93%  

Problem 3.4

A circular saw  1.05 m in diameter is to be driven from the PTO  of the Farmland tractor as shown schematically
in Figure 3.5. The linear speed of the cutting tip of the saw is to be approximately 50 m/s. The pulley on the
PTO gear box  and that on the saw shaft are both 230 mm diameter. The belt pulley runs at 1300rpm when the
engine speed is 2250 rpm.

(i) What engine speed should be used?
Answer:

For the saw,   V = 50 = π D N, N = 
50 x 60

3.14 x 1.05
    = 910 rpm

For this saw speed, engine speed, Ne =  
910
1300

     2250  =  1575 rpm

(ii) Using Figure 3.4 (a), estimate the maximum power available at the saw. Answer: 25 kW

(iii) If the saw absorbs 20 kW for 30% of the time and 7.5 kW for the remainder, estimate the average fuel
consumption?

Answer: At 20 kW, SFC  = 240 g/kWhr;  FC = 240 x 20 = 4.8 kg/hr
   At 7.5 kW, SFC = 325 g/kWhr;  FC = 335 x 7.5 = 2.5 kg/hr

  Average FC = 0.3 x 4.8 + 0.7 x 2.5 = 3.2 kg/hr
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3 .3   TRACTOR DRAWBAR PERFORMANCE

3.3.1  Output

(a)     Travel       speed              -              drawbar       pull

The mechanism of the tractor (the transmission and wheels) converts the rotary motion of the engine to linear
motion of the drawbar.  As shown in Section 2.2.1 above, the tractor operates:

(i) with an ideal travel speed:

Vo   =   π  D 
Ne
q

   

This neglects loss in travel speed due to slip of the driving wheels.

(ii) with an ideal drawbar pull:

 P   =  
2 q Te

D
   

This neglects loss in drawbar pull due to rolling resistance of the wheels.  

Thus for the tractor in:
(i)  higher gears (smaller values of q, smaller speed reductions, smaller torque multiplications) will give

higher travel speeds and lower maximum drawbar pulls
(ii) lower gears (larger values of q, larger speed reductions, larger torque multiplications) will give lower travel

speeds and higher maximum drawbar pulls

The actual travel speed - drawbar pull graphs for the Farmland tractor when tested on a test track at maximum
governed speed are shown in Figure 3.6.  Consideration of the above equations and Figure 3.2 will show that:
(i) travel speed at zero drawbar pull is determined by gear ratio, q
(ii) travel speed decreases as drawbar pull is increased because of decreasing engine speed and increasing

wheelslip

Comparison of these with the ideal graphs in Figure 2.2(c) shows that they are similar in form but the:
(i) actual travel speeds are less than the ideal, particularly at higher drawbar pulls
(ii) actual drawbar pulls are less than the ideal

Increasing the drawbar pull of the tractor in the three highest gears will eventually bring the engine to its
maximum torque condition at which forward motion will cease; the engine will stall.

In the four lowest gears, the torque multiplication (q) is so great that, instead of stalling the engine as in the
higher gears, the engine can make the wheels slip completely and hence the drawbar pull is effectively limited by
wheelslip.  In these gears, the engine does not reach full power;  all such gears have the same maximum pull
(Figure. 3.6).

Plotting the maximum engine power envelope from Section 2.2.4 and a maximum drawbar power envelope on
these axes shows how the actual performance falls short of the maximum, particularly at large drawbar pulls.

The above graphs are shown for maximum governor settings: lower settings will give lower travel speeds but
approximately the same maximum drawbar pull in any gear corresponding to maximum torque, which is
independent of the governor setting.

Note the small, 'triangular' shaped areas between the performance lines for the gears and the maximum drawbar
power envelope. These are areas in which the engine could operate the tractor but which are unavailable because
of the discrete values of the gear ratios. More gears would reduce the size of these; in the limit a continuously
variable transmission (as in a hydrostatic drive) would allow the tractor to operate at all points on or under the
maximum drawbar power envelope.
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(b)     Drawbar       power       -       drawbar       pull

Given the drawbar pull - travel speed characteristics of the tractor shown above, the drawbar power - drawbar pull
characteristic will be determined from Equation 2.4:

Drawbar power Q = Drawbar pull P . Travel speed V

It is usual to plot drawbar power against drawbar pull as shown in Figure. 3.7.

Consideration of  the above equation and Figure 3.6 will show that:
(i) at zero drawbar pull, the drawbar power will be zero
(ii) the maximum drawbar power (shown with 'x' for the three higher gears) will correspond to maximum

engine power
(iii) for the lower gears, in which wheelslip is limiting, drawbar power will not reach the value corresponding

to maximum engine power

We can also identify the ideal power `envelope´ from Section 2.2.4 which the drawbar power curves approach in
the higher gears. In the lower gears, where drawbar pull is limited by wheelslip, they fall far short; the difference
represents mainly the power losses because of wheelslip and, to a lesser extent, rolling resistance. This matter is
discussed further in Section 5.4.2.

3.3.2  Input

(a)     Fuel       consumption       -             drawbar       power   

The fuel consumption characteristics of the tractor shown in Figure 3.8 for 6th gear and for the maximum
governor setting will reflect the fuel consumption characteristics of the engine. Again the fuel consumption (rate)
(above that required to keep the tractor moving with no drawbar pull) is approximately proportional to the
drawbar power being developed.

(b)     Specific       fuel       consumption       -       drawbar       power

The specific fuel consumption (rate) for the tractor is defined as:

SFC  = 
Fuel consumption FC (tractor)

 Drawbar power Q
   

The graph of specific fuel consumption versus drawbar power at maximum governor setting is also shown in
Figure. 3.8.

For a given engine power the tractor SFC will be higher than for the engine alone since the drawbar power will
be less than the engine power due to power loss in the transmission and wheels.

Conditions of efficient fuel use (good economy, low SFC) by the tractor will correspond to governor setting
(hence engine speed), gear selected (hence travel speed) and drawbar pull (determined by the load) that will bring
the engine to work in an area of low engine SFC as shown in Figure 3.4.
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3.3.3 Other measures of tractor performance

(a)      Wheelslip       -              drawbar       pull

Wheelslip (usually abbreviated slip) represents a loss of forward motion by the tractor and an associated loss of
power as discussed in Section 2.3 above.  It arises because the force at the wheel / surface causes  a loss of
motion, ie, the tractor does not move forward an amount equal to the amount that the wheel rotates. (See also the
more detailed discussion in Section 4.1 below).   

The definition of slip given in Section 2.3.1 is equivalent to:

Slip i =  
mo -  m

mo
     

where: m   =  distance traveled for given number of revolutions with drawbar pull
 mo =  distance traveled for given number of revolutions with zero drawbar pull

Because it is closely related to the wheel / surface reaction (parallel to the surface), which depends on the drawbar
pull, it is usual to plot slip against this variable, as also shown in Fig. 3.6. Slip does not depend to a significant
extent on speed, hence a single slip - drawbar pull graph is shown for all gears ( travel speeds).  

Slip is an important dependent variable in showing the `state´ of the traction process and will be used in Chapter
4 to define the drawbar pull for one optimum condition, that is, maximum drawbar power.    

(b)     Tractive       efficiency   

Tractive efficiency was defined in Section 2.4.1 as:

ηt = 
Drawbar power Qd
 Wheel power Qw 

   

If we assume power losses in the transmission from engine to the wheels of, say 10%, we can write:

ηt = 
Qd

 0.9 x Qe
   

Thus for the higher gears, for which we know both maximum engine power and maximum drawbar power (under
the same conditions), we can calculate tractive efficiency as shown in Problems 3.5 and 3.9 below.

(c)     Tractive       coefficient

Tractive coefficient was defined in Section 2.4.2 as:

Tractive coefficient ψ = 
Drawbar pull P 

Weight on driving wheels W
   

The tractive coefficient  can be used to estimate the maximum drawbar pull for the tractor with other weights on
the wheels or for other tractors with similar tyres, etc; see Problem 3.10 below.
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Problem 3.5

A tractor was tested on a firm surface and gave the following data.

Rear wheel weight Wr = 3900 kg Engine power Qe = 62.1 kW

Drawbar pull P   = 26.2 kN Fuel consumed F   = 176 g
Distance, no-load mo = 55.8 m          Time           t    = 25.8 s

Distance, load m   = 46.2 m

Determine the wheelslip, travel speed, drawbar power, tractive efficiency, fuel consumption and specific fuel
consumption.

Answers:

Wheelslip, i  = 
(mo-m)

mo
    =  

(55.8 - 46.2)
55.8

     = 17%

Travel speed, V  = 
m

t
 = 

46.2
25.8

     =  1.79 m/s

Drawbar power, Qd  = PV = 26.2 x 1.79 = 47 kW

Assuming transmission efficiency ηr  = 0.9

Wheel power, Qw = 0.9 x 62.1 = 55.9 kW

Tractive efficiency, ηt =   
Qd
Qw

     = 
46.9
55.9

    = 84 %

Fuel consumption rate, FC  =  
F
t
    = 

176
25.8

     = 6.8 g/sec = 24.5 kg/hr

Specific fuel consumption, SFC  = 
FC
Qd 

    = 
6.8 x 3600

 47.2
   = 520 g/kWhr

Problem 3.6

For the Farmland tractor operating in 5th gear at maximum governor setting, use data from Figures 3.6 and 3.7
to determine:
(i)  the travel speed, drawbar power and the wheel slip if the drawbar pull is 10kN?
Answers: 6 km/hr, 17 kW, 7.5 %
(ii) what is the maximum drawbar pull in the governed range and the wheelslip under these conditions?
Answers: 18 kN, 15 %

Problem 3.7

For the Farmland tractor operating at maximum governor setting with a drawbar pull of 15 kN use data from
Figure 3.6 and 3.7 to determine, for gears 1, 3 and 5, at what speeds it will travel, what drawbar powers will be
developed and what will be the wheelslip?
Answers: Gear 1, 2.3 km/hr, 9 kW, 11 %; gear 3, 3.6 km/hr, 15 kW,11 %; gear 5, 5.7 km/hr, 23 kW, 11 %.
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Problem 3.8

For the Farmland tractor operating at maximum governor setting, and developing 20 kW at the drawbar, use data
from Figure 3.6 and 3.7 to determine, for gears 4, 5 and 6, what drawbar pulls it will develop, at what speeds it
will travel and what will be the wheel slips?
Answers: Gear 4, 16.5 kN, 3.5 km/hr,12 %; gear 5, 12.5 kN, 5.9 km/hr, 9%; gear 6, 9.5 kN, 7.6 km/hr, 7 %

Problem 3.9

 For the Farmland tractor operating in 6th gear at maximum governor setting, use data from Figure 3.6 and 3.7
to determine:
(i) what are the maximum drawbar power and the corresponding engine power?
Answers: 26.2 kW, 33.5 kW.
(ii) an estimate of  the tractive efficiency:
Answers:

Tractive efficiency ηt = 
Drawbar power Qd

 0.90 x Engine power Qe 
     = 

26.2

0.9 x 33.5
 = 87 %

Problem 3.10

For the Farmland tractor use data from Figure 3.6 and 3.7 to determine:

(i) What are the maximum drawbar pull and the maximum tractive coefficient if the weight on the rear wheels is
2570kg.
Answer: 21.5 kN

Tractive coefficient  = 
Maximum drawbar pull  Pmax 

Weight on driving wheels W
    =  

21.5 x 1000
2570 x 9.8

    = 0.85 at 100% wheelslip

(ii) What weight would have to be added to the rear wheels of the tractor for it to have a maximum pull of 24kN?
Answer: Assuming the same tractive coefficient at 100 % wheelslip:

Weight on rear wheels W = 
Maximum  drawbar  pull,  Pmax

Maximum  tractive coefficient, ψmax

= 
24

0.85
     = 28.2 kN = 2880 kg

Weight to be added = 2880 - 2570 = 310 kg

Note: A large increase in the weight on the rear wheels will give a proportional increase in the drawbar pull but
may overload the transmission components and / or cause the tractor to tip over rearwards.
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CHAPTER  4

TRACTOR  PERFORMANCE  ON  SOFT  SOIL - THEORETICAL

4.1   INTRODUCTION

4.1.1  General

The study of tractor performance on soft soil is a typical agricultural engineering problem but it is part of a
much larger subject that includes soil - implement and soil - vehicle mechanics in general and other applications
associated with military and space vehicles1. Early work on military vehicles was mainly concerned with the
prediction of "trafficability", ie, if a simple penetrometer (a device for measuring the force to push a certain shape
into the soil) could be used to predict whether a vehicle could traverse a particular area of ground.

More recent studies of tractor performance on soft soil have proceeded along two lines as mentioned in Section
1.4.2 (c) and (d) above, viz:

(a)     Theoretica   l

The theoretical  approach uses classical soil properties (cohesion (c) and angle of internal friction (φ)) and some
semi - empirical parameters to develop a model for the prediction of the tractive force (soil reaction) and drawbar
pull. This approach, which provides the best understanding of the traction process and an appropriate introduction
for students, will be followed here.

(b)     Empirical   

The empirical approach is one where the tractor performance is predicted purely on the basis of a correlation of
cone penetrometer readings with corresponding performance measurements. Such an approach provides a ready
and useful means of performance prediction but it is not suitable as a basis for understanding the traction process;
a brief treatment is given in Chapter 5.

The usual approach to considering the prediction of tractor performance is to begin with the study of the
performance of single wheels. The performance of the tractor is then understood as the combined interaction and
performance of two or more such wheels.  

4.1.2   Definit ions

The factors which are significant in the study of the performance of a single wheel may be defined as follows:

(i) Vertical load or weight on the wheel, W is the vertical force through the axle.

(ii) Travel (output) speed, V is the linear speed of driven wheel;  there is usually some loss in motion due to
wheel-slip; thus from Equation 2.1:

Travel speed  < Rotational speed  x  Rolling radius

(iii) Rolling radius is defined in terms of the ‘distance traveled per revolution’ /2π under some defined zero
conditions; these usually include zero drawbar pull, zero braking torque and a defined surface. 

(iv) Wheel-slip, i is the proportional measure by which the actual travel speed of the wheel falls short of (or
exceeds) the "theoretical" speed (Equation  2.5).

(v) Input torque is the (rotational) input effort on driven wheel which is converted to (linear) output  effort
(force or drawbar pull);  there is usually some loss in effort due to the rolling resistance hence from
Equation 2.2:

Drawbar pull  < 
Input torque

 Rolling radius
 

                                                
1 Other terms used to describe the general field include `off-road locomotion´ and `terra-mechanics´ (earth mechanics).
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(vi) Rolling (motion) resistance, R is the force opposing motion of the wheel that arises from the non-
recoverable energy expended in deforming the surface and wheel. It is convenient to consider this force as
acting in the horizontal direction.

(vii) Tractive force, H is the horizontal reaction    on       a       driven        wheel       by       the       s      oil    in the contact area; it is equal and
opposite to the horizontal force generated    by       the        wheel       on       the       soil   .

(viii) Drawbar pull, P is the horizontal force at the axle generated by a driven wheel; from Equation 2.7 it  may
be assumed that:

Drawbar pull = Tractive force - Rolling resistance

(ix) Towing force is the force to move a freely rolling wheel over the surface and is equal and opposite to the
rolling resistance.

The traditional four-wheel tractor is a combination of  driven (or occasionally braked) wheels at the rear and free-
rolling, towed (pushed) wheels at the front.

4.1.3  Operational states of a wheel

The operation of a wheel can be classified into one of the following states;  each occurs within the tractor or other
machines under some conditions and each has a particular unknown parameter associated with it.

(a)     Towed   

Here the wheel, such as the front wheel of the tractor or the wheel of an agricultural implement, is towed with
zero opposing external torque; the unknown parameter is the rolling resistance.

(b)      Self-propelled   

Here the wheel is driven with an external input torque to overcome its own rolling resistance and to propel it
across the surface without developing a drawbar pull. This approximates to the drive wheel of a tractor with no
drawbar pull (if we neglect the rolling resistance of the front wheels); the unknown parameter is the rolling
resistance.

(c)      Driven   

Here the wheel is driven with an external input torque and is required to develop a drawbar pull as in the drive
wheel of a  tractor;  the unknown parameter is the wheelslip.  The extreme case is where the wheel slips, but
does not move forward.

(d)      Braked   

Here the wheel is towed against an opposing, external torque as when being braked or when it is used to generate
a torque to operate a 'ground-driven' machine such as a seed drill; the unknown parameter is the wheelslip.  The
extreme case is where the wheel does not rotate, but just skids across the surface.

Figure 4.1 (Wismer and Luth, 1974) shows these operational states of a wheel in which input and output torque
and input and output force (towing force or drawbar pull) are shown plotted against wheel-slip. From this it will
be seen that:

(i) the self-propelled wheel is a special case of the driven wheel, with zero drawbar pull.
(ii) the towed wheel is a special case of the braked wheel, with zero braking torque.

The origins for the graphs shown are based on the assumption that, with respect to the kinematic ideal (origin at
O),  a self-propelled wheel is subject to some positive slip (origin at O') and a towed wheel is subject to some
negative wheelslip (origin at O").  

Figure 4.2 uses the trajectory of a point on a wheel rolling on a horizontal surface (the cycloid) to illustrate the
effect of wheelslip by showing the distances traveled by the wheel for the various states discussed above and
represented in Figure 4.1. The wheelslip is shown by the loop (motion of the wheel relative to the surface) in the
trajectory for the self propelled and driven wheels.
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4.1.4  Wheel -  s l ip definition

The generation of a drawbar pull by a wheel driven on a surface results in some relative motion at the wheel -
surface interface.  This reduces the forward motion of the wheel to less than the ideal value and is referred to
generally as 'wheelslip' or 'slip'.  In terms of measurement, prediction and presentation of tractor performance,
slip is the single most important, dependent parameter.

Slip is defined as the proportional measure by which the actual travel speed (or distance) of a wheel falls short or
exceeds the 'ideal' or 'zero' slip speed (or distance).  The magnitude of slip is thus dependent on how the `zero´
slip is defined and measured.

The correct zero condition would be under conditions where the travel speed = linear speed of the surface of the
wheel = rotational speed x rolling radius.  However, since the rolling radius is impossible, or at least difficult,
to measure, a more convenient zero condition and method of measuring it is used.  This alternative 'zero'
condition is defined as that occurring when the wheel is driven (usually over the (test) surface) with zero drawbar
pull (no load), ie, in the self-propelled condition shown as the origin at point O' in Figure 4.1.  

Thus as in Section 2.3.1 and Equation 2.5,

Wheel-slip, i  =   
Vo -  V

Vo
   100 % (4.1)

where  Vo = travel speed when the wheel is driven, with    zero    drawbar pull, on the surface

V  = travel speed when the wheel is    generating    a drawbar pull, on the surface

The    driven    condition is used, in preference to the    towed    (point 0" in Figure 4.1), because it is usually more
convenient to drive the wheel over the surface with zero drawbar pull than to tow it.

An alternative 'zero' condition for slip is where, for the zero pull test, the wheel is driven on a    hard    surface (such
as a road), rather than on the    test    surface. Under these conditions the slip at zero drawbar pull on the test surface
will not be zero. In describing an experiment it is necessary to state which 'zero' slip condition was used.

In measuring the performance of a tractor it is not possible to drive a wheel alone over the test surface, hence the
zero slip condition is usually taken when the    tractor    is driven with zero drawbar pull over the test surface. The
drive wheels will suffer some extra small slip in having to overcome the rolling resistance of the front wheels.
Thus the `zero´ point will be even further to the right than 0' in Figure 4.1.

4.1.5  Wheelslip measurement

The use of velocity  for measuring slip for a tractor as described above is not particularly convenient because
variations in engine speed would influence the result, hence other methods have been devised. In the following it
is assumed that the zero drawbar pull distance is measured on the test surface.

(a)      Measurement       of       distance       traveled

In terms of distances (for a given number of wheel revolutions):

Wheelslip, i =   
mo -  m

 m o 
  100 % (4.2)

where: mo = distance traveled when the tractor is driven with    zero    drawbar pull on the surface

m = distance traveled when the tractor is    generating    a drawbar pull on the surface

This is a convenient method when only a distance measuring tape is available and when the counting of whole
numbers of wheel revolutions can be done visually; the tractor is tested over the same    number       of       revolutions    for
both tests.
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(b)     Counting       of        wheel       revolutions   

In terms of numbers of wheel revolutions (for a given distance traveled):

Wheel-slip, i   =   
N - No

N
   100 % (4.3)

where: No = number of wheel revolutions when the tractor is driven with    zero    drawbar pull on the surface

N = number of wheel revolutions when the tractor is    generating    a drawbar pull on the surface

This is a convenient method if equipment to measure fractions of a wheel revolution is available; the tractor is
tested over the same    distance    in both tests.

(c)      Use       of       a       free       rolling        wheel   

On some occasions it is desirable to be able to measure slip while moving but to do so it is necessary to avoid
the requirement that the zero-pull test and subsequent with-pull tests be conducted over the same number of
wheel revolutions (method (a) above) or for the same distance (method (b) above).

The use of a free-rolling wheel (such as an attached 'fifth wheel' or a tractor front wheel) as a `non-slip´ reference
overcomes this problem in principle. The method involves the use of revolutions of the free wheel (no and n) to

infer the rear wheel revolutions under the zero-pull (No) test, corresponding to the unknown distance used for the

pull test (for which N revolutions were recorded).  Thus from Equation 4.3,

Wheelslip, i   =   

N -  
n

 no
 No

N
 (4.4)

From Equation 4.4, it can be seen that the rear wheel revolutions (No) for the zero pull tests are scaled by the

ratio of the free wheel revolutions for the zero-pull and with-pull tests, no and n, to give the zero pull, rear

wheel revolutions corresponding to the pull test distance.

In order to use this method it is necessary to have a wheel counter (to measure fractions of a revolution) on both
the driving and the free wheel(s).  It should also be noted that the free wheel revolutions are affected by speed and
surface condition and so the free wheel may need to be calibrated if accurate results are to be obtained, particularly
at small slips (Parkhill and Macmillan, 1984).

Modern techniques for continuously measuring slip using radar or ultrasonic sound for speed measurement are
now available.
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4 .2   TRACTIVE  PERFORMANCE

As discussed in Section 1.4 above, four different approaches have been taken to the study of tractor performance;
three have been applied to tractive performance.

4.2.1 Practical / experimental measurement

The early study of the performance of tractors was limited to the experimental measurement of travel speed and
wheelslip at various drawbar pulls on soils (for example, Southwell, 1964) and on test tracks (Baillie and Vasey,
(1969) . The results, as discussed in Chapter 3, were intended to provide an understanding of the principles
involved and a basis for comparing the    relative    performance that farmers might expect from the various tractors
in the field.

Rolling resistance of wheels was measured by equating it to the towing force required to move different types of
(mainly transport) wheels across visually described surfaces, eg. road (hard), stubble (firm), cultivated soil (soft)
etc. The results were quoted on the basis of a coefficient of rolling resistance. The early work of McKibben and
Davidson, (1940) was of this type.

4.2.2 Theoretical prediction

The theoretical prediction of tractive performance has involved the separation of the problem into two parts, viz,
the prediction of:

(i)   tractive force,  H
(ii)  rolling resistance,  R

Using this approach it is assumed (Equation 2.7) that the drawbar pull (P) is what remains of the tractive force
after the rolling resistance has been overcome, ie:

P(i)   =   H(i)   -  R (4.5)

where:P(i) implies that P will be determined as a function of slip
H(i) implies that H will be predicted as a function of slip

While R is also a function of slip, this function is not known and hence the value for R is that measured under
the towed condition or predicted using the theory in Section 4.3, both of which assume zero slip.  Clearly this is
only approximate because the rolling resistance under finite slips will be greater than the value measured or
predicted with zero slip.

The generation of a    tractive       force    by the tractor requires an equal and opposite    horizontal    reaction by the soil
against the driving wheels in the contact area. This reaction force, which in effect determines the tractor
performance, is predicted on the basis of the soil strength parameters (c and φ) and the soil deformation
corresponding to various wheelslip values.

The    support    of the tractor requires a    vertical    reaction on the wheels which causes vertical deformation of the soil
in the contact area. Equating the energy to deform the soil (ie. to make the rut) to the work done by the rolling
resistance force provides a basis for calculation of the latter. The process is modelled by the pressure - sinkage
relationship for a plate pressed into the soil; slip is considered to be zero (See Section 4.3).

4.2.3 Empirical  prediction  

Here experimental data on the drawbar pull and rolling resistance of various wheels  together with a single soil
parameter (the cone index obtained by measuring the force to push a cone penetrometer into the soil) are used to
predict drawbar pull and rolling resistance on a purely empirical basis (Wismer and Luth, 1974) as discussed in
Chapter 5.

As mentioned in Section 1.4 above the theoretical / predictive approach provides the best basis for    understanding   
tractive performance and will be emphasised here; the other approaches may be more readily used for the
immediate determination of wheel performance.
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Figure 4.3: Various conditions for a wheel rolling on a surface
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4 .3  ROLLING  RESISTANCE

4.3.1 Wheel conditions

The rolling resistance of a wheel is, in general terms, the force opposing the motion of the wheel as it rolls on a
surface. This force arises from the energy losses that occur due to

(i)   the elastic but non-ideal deformation of the wheel   
(ii)   the inelastic and non-recoverable (plastic) deformation of the surface
(iii)  friction in the wheel bearings (usually assumed to be negligible)

From this it will be clear that the rolling resistance of a wheel will be a function of the strength - deformation
properties of the surface and the size and deformation characteristics of the wheel. For wheels with tyres, the
secondary factors include the air pressure, the structure of the tyre carcass (radial or bias ply) and the tread pattern.

For speeds used with agricultural tractors, rolling resistance  is relatively independent of the speed of deformation
of the soil and the tyre, hence of the travel speed.

We may consider a range of wheels as shown in Figure 4.3; here 'hard' means near rigid and 'soft' means
deformable.

(i) The ideal is a perfectly rigid wheel rolling on a perfectly rigid surface. This defines the kinematics of the
rolling wheel.

(ii) Hard wheel on a hard surface.  This is approximated to by an elastic steel wheel rolling on an elastic steel
track as in a railway.

(iii) Hard wheel on soft surface.  Here most of the deformation and energy loss occurs in the surface which
yields plastically but does not recover. Tractor front wheels and implement wheels with 'high' pressure
tyres, operating on soft agricultural soil, are of this type.

(iv) Soft wheel on hard surface. Here most of the deformation and energy loss occurs in the wheel and appears
as heat.  Tractor driving wheels and vehicle wheels both operating on road surfaces are of this type.

(v) Soft wheel on soft surface. Here both the wheel and the surface deform significantly as in the tractor rear
wheel operating on soft soil. Energy  loss occurs mainly in deforming the soil as in (iii) above.  

One major aspect of understanding and predicting tractor performance is that of determining the rolling resistance
of a wheel as it is towed without slip over the surface. The problem of determining the rolling resistance of a
driving wheel, when slip is present, is more complex and will not be considered here (Reece, 1965-66).

4.3.2 Theoretical prediction

When a wheel rolls over a soft surface it makes a rut or compacted track. The simplest basis for the prediction of
its rolling resistance is to therefore assume that the work done against the rolling resistance is the work done in
compacting the soil. Bekker (1956) assumed that the wheel was equivalent to a plate continuously being pressed
into the soil to a depth equal to the depth of the rut produced by the wheel.

(a)      Work       done       to       deform       soil   

For a plate, length l,  width b, being pressed into the soil, as in Figure 4.4, Bekker suggested that the pressure,

p under such a plate is given by:

p  =   (
kc
b

  + kφ) zn (4.6)

where:  z is vertical soil deformation (sinkage)
kc , kφ  are soil sinkage moduli

n is soil sinkage exponent
b is the width of the plate
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Figure 4.5: Log p plotted against log z in analysis of plate sinkage tests.

Reproduced from Bekker (1969) with permission of University of Michigan Press

Figure 4.4: Plate being pushed into the soil to measure rolling resistance parameters (Cut away view)
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Then the vertical work to press such a plate into the soil:

  Work =  bl 
0

Z 0

∫ p  dz

= bl  (
kc
b

  + kφ)  
0

Z 0

∫ z  dz

=  
l (kc +  bkφ)

n+1
  zo

n+1 (4.7)

But for a weight, W on the plate, at maximum sinkage zo,

W = bl pmax

= bl  (
kc
b

  + kφ) zo
n

= l (kc + bkφ) zo
n

zo =  [  W
 l (kc +  bkφ) ] 1/n

Substituting for zo in Equation 4.7 gives

Work =  
l (kc +  bkφ)

n+1
   [

 W
 l (kc +  bkφ) ]  (n+1)/n (4.8)

Before considering the two types of wheel / surface that have been analysed on this basis we need to show how
the soil parameters can be measured.

(b)      Measuring       soil       parameters

Because the work to compact the soil is used as the basis of prediction of rolling resistance, the force to push a
plate into the soil and the associated sinkage is chosen as an appropriate method of determining the soil
parameters for the calculation of rolling resistance.

To obtain the parameters, a series of plates of different widths, b1, b2, b3  are pushed into the soil while the

force and corresponding sinkage are measured.  From  Equation 4.6 we  can write:    

log p  =   log (
kc
b

  + kφ) + n . log z

Assuming the data follow Equation 4.6, when log p is then plotted against log z, we get a series of straight lines

of slope 'n' and intercept on the log p axis = (
kc
b

  + kφ) as shown in Figure 4.5. Further if the intercepts  are

then plotted against  
1
b
  the slope of this line is kc and the intercept at  

1
b
  is kφ .
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Figure 4.6: Parameters for the analysis of the rolling resistance of a soft wheel on a soft surface.
Reproduced from Bekker (1960) with permission of the University of Michigan Press.
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Figure 4.7: Parameters for the analysis of the rolling resistance of a hard wheel on a soft surface.
 Reproduced from Bekker (1956) with permission of University of Michigan Press.
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 (c)     Soft        wheel       on       soft       surface   

Here the wheel (or a track) is assumed to impose a uniform pressure on the soil which deforms uniformly over
the contact area (as in Figure 4.6(a)) until the contact area times the pressure at the tyre surface is equal to the
weight on the tyre. This pressure may be assumed to be made up of the pressure equivalent to the stiffness of the
tyre carcass and the internal pressure of the air (and the water if used).

Consider the work done in towing such a wheel a distance, l  against the rolling resistance, R. In simple terms,

if this  is equal to the work done on forming the rut as calculated for the plate, length l , width b pressed into the

soil, as in (a) above:

R l =  
l (kc +  bkφ)

n+1
   [  W

 l (kc +  bkφ)  
 ]  (n+1)/n

 Thus the rolling resistance,

R =  
(kc +  bkφ)

n+1
   [  W

 l (kc +  bkφ)
  ]  (n+1)/n

 =  
1

(n+1)(kcb + bkφ)  1/n 
 [W

l 
 ](n+1)/n (4.9)

Writing this in terms of the ground pressure p =  
W
bl  gives: 

R =  
b

(n+1)(
kc
b

 +  k φ)1/n

  (p) (n+1)  /n (4.10)

This simple analysis suggests that rolling resistance depends directly (but not necessarily proportionally) on the
weight on the wheel W, and inversely (but not necessarily proportionally) on the length of the contact area, l but

not the diameter of the wheel except in so far as it affects l . It also depends in a complex way on the width of

the contact area, b.

For n = 1, which might be considered typical for an agricultural soil (Dwyer, 1984), this equation can be put in
the form of a coefficient of rolling resistance (see Section 4.3.3):

R
W

   = ρ  =   
p

2l (
kc
b

 +  k φ)

 (4.11)

This equation suggests that the coefficient of rolling resistance will be proportional to the ground pressure and
inversely proportional to the length of the contact area.  Hence, for example, improved traction will be achieved
on sandy soils if p is small and l is large, ie, by the use of low pressure tyres.

d)     Rigid        wheel       on       a       soft       surface   

Here the problem, as shown in Figure 4.6(b), is more complex because the sinkage and hence the pressure is not
constant over the contact area as was assumed for the uniform sinkage case above. It can be shown (Bekker 1956)
that:

R

W
n D

n k bk

n
n

c
n

=
−











+ +    

+
+

+

3

3

1

2 2

2 1

1

2 1

( )

( )( )φ

(4.12)

Here it will be seen that the rolling resistance is dependent, in a complex way ,on the weight on the wheel as
well as its width and    diameter    compared with the    length       of       the       contact       patch    in the previous analysis.
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Figure 4.8: Rolling resistance of agricultural tyres of different diameter on various surfaces. 
Reproduced from McKibben and Davidson (1940) with permission of the

American Society of Agricultural Engineers
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4.3.3 Experimental measurement

Historically the experimental measurement of rolling resistance provided the data for the evaluation of traction
systems. The weight on the wheel, the wheel diameter and / or width and the soil condition were seen as the
most important factors and so the rolling resistance for each type of wheel was expressed in terms of the
dimensionless number:

Coefficient of rolling resistance, ρ  =  
Rolling resistance force

 Weight force
 (4.13)

Use of such a coefficient requires that the wheels must be defined in terms of their diameter, width, etc, and soil
conditions be verbally described.

The early work of McKibben and Davidson (1940), as shown (corrected) in Figure 4.8, used this approach. The
intuitive and practical experience that we have of the significance of wheels rolling on soft surfaces is confirmed
by that graph. There it will be seen that the coefficient for sand and loose soil is some 4 - 6 times that for
concrete and firm soil and that doubling the diameter will halve the coefficient.

4.3.4 Empirical prediction

The empirical prediction of rolling resistance is considered in Chapter 5

4 .4   TRACTIVE FORCE 

4.4.1  Introduction

A track or wheel generates a tractive force by reacting (pushing) against the soil.  Any such force involves shear
stresses in, and an associated deformation between the track (together with the soil between its lugs or grousers)
and the underlying soil bulk. For the track as a whole such deformation results in slip or lost motion.  An
analysis of the generation of tractive force therefore requires a knowledge of the stress - deformation relationship
of the soil.

4.4.2  Shear stress - deformation characteristic for soil

The shear stress - deformation relationship for soils may take different forms depending on the normal and shear
stresses under which they were compacted and their degree of cementation (bonding together of the soil particles).
Bekker (1956) fitted empirical equations to two typical forms and analysed tractive force by integrating them over
the length of the track. Only the simpler analysis applicable to loose and / or non-cemented soil with slowly
rising shear stress - deformation characteristic (as shown in Figure 4.9) will be given here.

The soil shear stress - deformation characteristic for such a soil is assumed to have the following form:

S   =   Smax  (1 - e-j/k  ) (4.14)

where Smax =  shear strength of the soil and corresponds to shear stress at large deformation

= (c  +  σ  tan φ)

c = soil cohesion
φ = angle of internal friction
σ = normal stress
j =  shear deformation
k =  shear deformation modulus

Hence S =  (c  + σ  tan φ) (1 - e-j/k ) (4.15)
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Figure 4.9: Typical shear stress / deformation curve for a loose uncemented soil .
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Figure 4.10: Plot of  e-j/k and S/Smax from Figure 4.9
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The shear deformation modulus indicates the 'rigidity' or deformation at which the soil reaches its shear strength
in being sheared.  It is a characteristic dimension and is taken as that at which the shear stress reaches 95% of its
final value (Wills, 1963) as shown in Figure 4.10.

ie.
S

Smax
   =   0.95   =   (1 - e-j/k)

e j/k   =   20   ie,     
j
k
    =   ln 20

k =   
j
3
  (closely)

Thus k is 1/3 of the deformation corresponding to 95% of the maximum shear stress.

To determine k, it is necessary to measure the shear stress (S) - deformation (j) characteristic for the soil and then
to plot the following against  j:

(i)  
S

Smax
    from experimentally measured results (Figure 4.9, Pudjiono (1998))

(ii) 1 - e-j/k for different assumed values of k, as shown plotted in Figure 4.10.

The modulus k may then be chosen by inspection according to the value corresponding to that graph (ii) which
best fits (i). Other methods are discussed by Wills (1963).

4.4.3  Analysis of locked track

Consider a rigid, inextensible track as shown in Figure 4.11 standing on a soil with strength parameters,
cohesion (c) and angle of internal friction (φ) and with a rising stress - deformation characteristic, as given in
Figure 4.9. Assume track grousers of width b, length l  and carrying a  weight W, are engaged in the soil.  

If the track is locked, the maximum tractive force that the track can generate will be the maximum force the soil
can resist.

Hmax =    Area  Smax

=    b l (c + σ tan φ)

=    b l  c + b l  σ tan φ

Hmax =    Ac + W tan φ (4.16)

This neglects any contribution of the soil being sheared at the end of the grousers.

Hmax represents the absolute maximum capacity of the track at large soil deformation corresponding

(approximately) to 100% slip. According to this simple theory, it is an upper-bound value that may be
approached but never exceeded.

This equation implies that Hmax depends on:

(i)  the area of the track which contributes to Hmax through the cohesive strength of the soil

(ii) the weight on the track which contributes to Hmax through the frictional strength of the soil

Dividing by W gives, in a similar way to Equation 2.15,

ψ'  =
Hmax
W 

   = 
c
W
A

   +  tan φ

=    
c
σ   +  tan φ (4.17)

where ψ' is a 'gross' tractive coefficient.
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Figure 4.11 Operational parameters for a track showing the variation along the track of:
             (i) normal stress,σ; (ii) horizontal deformation, j; shear stress, S.
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Problem 4.1

Figure 4.12 shows a crawler tractor standing (a) on level ground and (b) on a slope.

The following data apply:
Track - soil contact length l = 1.2 m

Track width (total for two) b =  0.6 m
Tractor mass W =  2.4 T
Soil cohesion c = 15 kPa
Soil angle of internal friction φ = 300

Angle of slope α = 150

Estimate the capacity, H, of the tractor as an anchor and the gross tractive coefficient, ψ;
assume that the normal stress under the track is uniform.   

Solution (b):

Resolving along the slope:

H cosα + W sinα = Ac + (W cosα - H sinα ) tanφ

H cosα + H sinα tanφ  = Ac + W cosα tanφ  - W sinα

H = 
Ac + W(cosα tanφ  -  sinα)

(cosα + sinα tanφ)
   =  

1.2 x 0.6 x 15 + 23.5 (cos15 tan30 - sin15)
(cos15 + sin15 tan30)

 

= 16 kN

ψ = 
H

Wcosα - Hsinα  = 
16

18.6
  =  0.86 

Answers: (a) 24.4, 1.04  

Repeat for  other arrangements where H is neither along the slope nor horizontal.

Problem 4.2

A rubber wheel carrying a load W of 5.4 kN has an effective ground contact area A of 0.09 m2 over which the
pressure may be assumed to be uniform. The soil and rubber / soil strength characteristics are shown in Figure
4.13

What is the maximum pull which can be generated by the wheel if:
(i)   the wheel has lugs which engage the soil?
(ii)  the lugs are removed?

Solution (i):

  σ  = 
5.4
0.09

  = 60 kPa

        Hmax = tractive force at the contact area

= 36  x  0.09

= 3.24 kN

Alternatively the strength of the soil may be calculated as Ac + W tanφ.  

Hmax = 0.09x 20 + 5.4 x 0.267 = 1.8 + 1.44 = 3.24 kN

Answer (ii): 1.57 kN
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Figure 4.12: Tractor as an anchor in Problem 4.1
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Figure 4.13: Soil and rubber characteristics for Problem 4.2
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4.4.4  Analysis  of  track with sl ip (Bekker, 1956)

Consider the track in Figure 4.11 being driven over a soil surface while developing a drawbar pull = tractive force
H.  The rotation of the track is such that a length of track equal to the track wheel centre distance (l) is laid out;

this is equivalent to a fraction of a revolution. Before the track moves an element of soil at its front will have
zero deformation; after the track has passed over it will have a finite value, jmax.

From Equation 4.2 above,

Track slip,  i   =  
mo -  m

mo
 

For no tractive force, the movement of the track forward will be equal to the wheel centre distance, ie. mo =  l

With tractive force the movement of the tractor = m

i  =   
l -  m

l  

But ( l - m) = maximum distance moved rearwards by the soil, ie, jmax.

i  =  
jmax
  l  

  

But since the track is inextensible, the deformation must grow linearly from front to rear as shown in Figure
4.11.

i  =   
j

x

    j   =   i x (4.18)

Tractive force is the sum of the contributions of the shear stress (times the corresponding area) for all the
elements of soil along the track :

H = b ⌡⌠

0

l
   S dx

= b  (c + σ(x) tan φ)) ⌡⌠

0

l

(1 - e-j/k)  dx

where σ(x) represents σ as a function of x.

If it is assumed that σ is constant, ie, independent of x,

H = b (c + σ tan φ)   ⌡⌠

0

l

(1 - e-j/k)   dx

= b (c + σ tan φ)  (1 − e−ix/k )
0

l

∫ dx

= b (c + σ tan φ)  [x  +  
k
i
  e-ix/k ]l

0
 

= b (c + σ tan φ)  [l + 
k
i
   e- il/k  + 

k
i
  ]
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Figure 4.14: Slip function, X versus il/k; reproduced from Reece (1967) with

                 permission of the Institution of Agricultural Engineers.
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= b l (c + σ tan φ)  [ 1 - 
k
il   +  

k
il   e -il/k  ]

= (Ac + W tan φ)   [ 1 - 
k
il   +  

k
il   e -il/k  ]

= Hmax  .  X (4.19)

where X =  slip function for assumed constant normal stress.

=  [1 - 
k
il  +  

k
il   e -il/k] (4.20)

The slip function X is shown plotted against  
il
k

  in Figure 4.14. This is a slip - tractive force graph where 
il
k

   is

a 'standardized slip' and X is the corresponding function giving H in terms of Hmax.

The following terms are significant in the contributions that they make to the tractive force.

(i) c and tan φ: the soil strength parameters contribute to H through their contribution to Hmax.

(ii) A (= b . l) :  the track area contributes to H through the contribution of the cohesive component of

the soil strength to Hmax; it will be proportional to A for a purely cohesive soil for which φ  = 0.

(iii) W (=  b . l . σ):  the weight contributes to H through the contribution of the frictional component

of the soil strength to Hmax. ; it will be proportional to W for a frictional soil for which c = 0.

(iv) l : the track length contributes to H through its contribution to track area as explained above. It

also contributes as it appears in the slip function in a way that causes an increase in X as length
increases; thus track length has significant effect on H in addition to its area effect.

(v) k: decreasing the horizontal deformation modulus (having a more rigid soil that reaches its
maximum shear stress at lesser deformations) has the effect of increasing H by causing an increase
in X.

(vi)  i: increasing the slip increases the deformation and the associated shear stress, which has the effect
of increasing X and H.

The above analysis may be extended to a wheel if it is assumed that the pressure under the wheel is constant.
The area of the contact patch may be assumed to be 0.78 b l.

4 .5   D RAWBAR PULL

The above gives the tractive force - slip relationship for a track or wheel.  It is clear that it also gives the basic
form to the drawbar pull - slip relationship for the performance of tractors measured in the field where the drawbar
pull is what remains of the tractive force after the rolling resistance has been overcome.

Fig. 4.15 shows the comparative performance of the same basic tractor (New Fordson Major) with different wheel
equipment, viz, two wheel drive (2WD) , four wheel drive (4WD) and tracks on cultivated (loose) and stubble
(firm, rigid) soil (Anon., undated).

From these results it is clear that the following give reduced slip and increased drawbar pull:

(i) tracks compared to 2WD on cultivated (loose) soil which shows the effect of area and length of contact
patch and of  weight

(ii) tracks on stubble (firm) compared to cultivated (loose) soil which shows the effect of soil strength and
rigidity (deformation modulus)

(iii) 4WD compared to 2WD on cultivated (loose) soil which shows the effect of area and weight.
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Figure 4.15 Comparative slip - pull performance of two wheel drive, four 
wheel drive and tracked tractor. Reproduced from Anon. (undated) with 
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As noted above, R is usually measured or predicted on the assumption of zero slip. An increase in slip associated
with an increase in H will mean that the prediction becomes less accurate because the above assumption will  be
increasingly invalid.

Hence the prediction of P using  Equation 4.5:

P   =   H  -  R (4.5)

will also become less accurate as shown in Problem 4.3, Figure 4.16.

Problem 4.3

Figure 4.16 shows a plot of measured wheel slip - drawbar pull data for a small crawler tractor tested on soil.     
The following data apply:

           Tractor: S o i l  (assumed):

Weight, W =  3800 kg Soil cohesion, c  =  15 kPa

Track length, l =  1.65 m Soil angle of  friction, φ = 30o

Track width, b =  0.35 m Soil deformation modulus, k = 0.02 m
Rolling resistance, R =  2.5 kN

Calculate the theoretical wheel slip - drawbar pull  performance and plot it on the graph with the performance
from the actual test.

H max  = Ac  +  W tan φ
=  2 x 0.35 x 1.65 x 15  +  3.8 x 9.8 x tan 30  =  38.8 kN

For appropriately chosen values of  i, calculate 
il
k

  hence X from Equation 4.20 or read from

Figure 4.14. Calculate H from Equation 4.19  and P from Equation 4.5 above. The results are shown
plotted in Figure 4.16

4 .6   D RAWBAR POWER

4.6.1 Wheel-slip - drawbar power characteristic

While the wheel-slip - drawbar pull graph above is the main performance characteristic for a track (or wheel) the
user is, however, usually more concerned with work rates, ie, drawbar power. The drawbar power - slip results (of
the tractor tests shown in Figure 4.15)   have been plotted in Figure 4.17 and show that there is an optimum slip
that gives a maximum drawbar power. Since all of these tractors had the same engine power, Figure 4.17 also
shows (in relation to maximum drawbar power) how significant the soil condition is (track - stubble compared to
track - cultivated) and also wheel / track contact area and weight are (track compared to 2WD and 4WD each for
cultivated soil).  

Figure 4.17 also shows the much greater power obtained from the track (and to a lesser extent the 4WD) due to
the larger drawbar pull that can be achieved without excessive slips and the losses in power that are associated
with them.

The wheelslip - drawbar power characteristic may be plotted from experimental data as shown in Problem 4.4.
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Figure 4.17: Comparative power – slip performance of two-wheel drive,
four-wheel drive and tracked tractor. Reproduced with permission of

Silsoe Research Institute
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Figure 4.18 Slip- drawbar power - drawbar pull performance for Problem 4.4 
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Problem 4.4

Figure 4.18 shows the track slip - drawbar pull graph for a tracked tractor. The following data apply:

Diameter of track = 0.85 m
Engine speed = 1760 rpm (assumed constant)

Overall gear ratio =  
1
65

 

Plot:
(i)  drawbar power versus drawbar pull
(ii) drawbar power versus track slip, hence
(iii determine the conditions for maximum power

Linear speed of track Vo  = π  D N  = 
3.14 x 0.85 x 1760

 65 x 60
    =  1.2 m/s (Equation 2.1)

Travel speed, V  = 1.2 (1-i)  where the slip, i is read from Figure 4.18 for various drawbar pulls  
Drawbar power, Q  = P.V  as plotted in Figure 4.18

The maximum power of 28 kW is achieved at a drawbar pull = 26 kN and  track slip = 11 %

4.6.2 Theoretical prediction of optimum wheel-slip

The performance of a track may be best characterized by the drawbar pull and slip at maximum drawbar power;
this may be predicted as follows (Reece 1967).

From Equations 4.5:

P =  H  -  R

=  (Ac  +  W tan φ)  X  -  R (4.21)
Drawbar power:

Q =  P.V

But from Equation 2.6

V =  Vo (1-i)

Q =  Vo (1 - i)  [(Ac  +  W tan φ)  X  -  R] (4.22)

where  Vo =  tractor wheel speed.

In order to determine the slip for maximum drawbar power by differentiation, it would be necessary to know R
as a function of slip. This is not available so an alternative is to neglect the influence of  R relative to H and to
calculate slip for maximum tractive power Q´, ie, obtain a maximum for:

    Q' =  H . V

=   Vo(1- i) (Ac  +  W  tan φ)  X

=  Vo (1- i) (Ac  +  W  tan φ) [1  - 
k
il +  

k
il    e-il/k]

=  Vo (Ac + W tan φ){[1 - 
k
il   + 

k
il   e-il/k]- [i  - 

k
l 

 +  
k
l   e-il/k]}
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Figure 4.19: Optimum wheelslip as a function of track length/deformation modulus.
Reproduced from Reece (1967) with permission of Institution of Agricultural Engineers.
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Figure 4.20: Drawbar power - wheelslip performance of a tractor on soil in different conditions.
Reproduced from Hutchings (1980) with permission of Department of Natural Resources and Environment (Vic)
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Differentiating this with respect to slip gives:

dQ'
di

 = Vo (Ac  +  W  tan φ) {[ k

i2l
   -  1

i
  e-il/k  -  

k

i2l
   e-il/k ] - [1 - e-il/k]}

= 0

ie,
k

i2l
    +  e-il/k   [ 1 -  

k

i2l 
  -  

1
i
  ]  -  1   =   0 (4.23)

Reece gives the numerical solution to this equation in Figure 4.19 and uses it to give, in terms  of the  ratio l/k,

an approximation to the slip i´, at which maximum drawbar power is obtained.

This relationship suggests that the slip i´, at maximum drawbar power (strictly maximum tractive power)
decreases:

(i) as k, the deformation modulus decreases, ie, the soil becomes more rigid and approaches its maximum
shear stress at smaller deformations

(ii) as l, the length of the contact area, increases

The drawbar power - slip results (of the tractor tests shown in Figure 4.15)  which have been plotted in Figure
4.19 confirm this prediction, viz:

(i) the track reaches maximum drawbar power at smaller slips on    rigid    stubble than on the    loose    cultivated
soil;

(ii) the    longer    track reaches maximum power at a (very much) smaller slip than does the    shorter    wheel (both
on loose soil).  

 
As another example Figure 4.20 shows the graph of drawbar power versus slip for a Deutz 2WD tractor tested on
soil in three conditions (Hutchings, 1980). Again the drawbar power is reached at lower slips on the uncultivated
(more rigid) soil than on the dry cultivated (loose) soil and both than on the soft, wet, cultivated soil.

The optimum slip (i') obtained from Figure 4.19 can be used, together with an appropriate rolling resistance , to
calculate the maximum drawbar power.

Qmax   =  Vo (1 - i') [(Ac  +  W  tan φ)  (1 - 
k
i'l   +  

k
i'l   e-i'l/k   -  R] (4.24)

The setting up of the tractor to operate at this or other condition is discussed in Chapter 7.
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Figure 4.21: Tractor showing normal stress increasing linearly from front to rear as
in Problem 4.6. Reproduced from Wills (1963) with permission of Elsevier Science.
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4.7  GENERAL PROBLEM

Problem 4.5 (Wills 1963)

Develop an expression for the tractive force - slip relationship developed by a track of width b, length l and total

weight W, operating on a frictional soil, if the normal stress increases linearly from zero at the front to a
maximum at the rear as show in Figure 4.21.

Assume σ =  a x  where a is a parameter to be determined. The requirement  for vertical equilibrium is that:

W = a b⌡⌠

 o

l

 x   dx

= a b [x2

2
  ]

l
0
   

= a 
b  l 2

2  
     

Hence

a = 
2W

b l2 
     

σ =  
2W

bl2
x

s = σ  tan φ  ( 1- e -j/k)

=  
2W

bl2
    x tan φ  ( 1- e -j/k)

From Section 4.4.4

H = b ⌡⌠

0

l

 s   dx

=
2W

l2
tan φ 

0

l

∫ x ( 1- e -j/k)  dx

Substituting   j = ix and integrating gives

H = 
2W

l2
tan φ[ x2

2
   + 

xk
i

  . e-ix/k  - 
k
i
 (- 

k
i
  e-ix/k)  ]

l
0
  

= Wtan φ [1 - 2 (
k
il  )2 ( 1 -  e-il/k  -  

il
k

   e-il/k]

Problem 4.6

Plot the tractive force - slip graph for the track in Problem 4.5 using data from Problem 4.3. Compare the
answers.
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CHAPTER  5

TRACTOR  PERFORMANCE  ON  SOFT  SURFACE - EMPIRICAL

5.1  INTRODUCTION

5.1.1  General

In Chapter 3 we considered the experimental evaluation of the 'ideal' performance of the tractor in terms of the
engine and the tractor operating in various gears on a firm surface. While this shows the influence of those
elements and is valuable for comparative purposes, it is of limited use in showing the performance on soft
surfaces or for predictive purposes.

In Chapter 4 we considered the theoretical analysis which is conceptually correct in the way that it calculates the
performance of the tractor as determined by the capacity of the surface to generate a reaction. However this
approach has two difficulties associated with the measurement of the surface properties.

Firstly, it requires the measurement of six properties of the soil; three (cohesion, angle of internal friction and
the deformation modulus) for the prediction of the tractive force and a further three (two sinkage moduli and an
exponent) for the prediction of the rolling resistance. These require complex facilities and are likely to be time
consuming if representative samples of the properties over an area are to be obtained.

Secondly, in general, agricultural soils are in a structured state in which the bonds between the soil aggregates
are intact. Prediction of tractor performance in the field, based on the above properties, requires that the latter be
measured with the soil in this undisturbed state. If the soil is disturbed during the sampling process for
laboratory determination of the properties (as it is likely to be) the measured values of both cohesion and
deformation modulus will be affected.

It is not possible to recreate undisturbed conditions in the laboratory after a soil has been disturbed and hence
in-situ methods of measuring undisturbed soil properties have been developed (Baladi, 1987).

5.1.2 Empirical method

The alternative to experimental measurement or to a theoretical analysis that is adopted in many engineering
fields is the so-called 'empirical' approach. This is based on a series of experiments that includes the major
variables or groups of variables. From these a set of predictive equations is developed, often using techniques of
dimensional analysis (Langhaar, 1978).

These equations can replace much experimental work, allow designs to be tried 'on the drawing board' and
answer 'what if . . . .? ' questions. The designs and the answers are of course only as good as the choice of
variables, the experimental data and the fit of the equations that are based on them.

The empirical approach (now frequently termed (computer) modelling) has proved to be useful in many
complex engineering problems. It provides a ready and useful means of performance prediction for the tractor
but it is not suitable as a basis for understanding the fundamentals of the processes involved. It has mainly been
applied to the tractive processes but it may also include the engine and so provide a basis for predicting the
performance for the tractor as a whole.

5.2 ENGINE PERFORMANCE MODELLING

Persson (1969) developed an equation for modelling engine performance based on power, speed, swept volume
and heat value of the fuel, together with two constants estimated from the test data. However for an engine of
given type and  swept volume his equation can be reduced to the form given by Huynh and Brown (1981).

FC  =  A Q + B N2 (5.1)

A and B are constants which can be determined if the fuel consumption, engine speed and power are known for
two points on the performance characteristic for the engine.
With reference to the performance of the Farmland tractor as shown in Figures 3.2 and 3.3, consider two points
on the performance characteristic at maximum governor setting as follows.
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Point 1      Point 2
Engine speed, N, rpm = 2390 2250
Engine power, Q, kW = 0 33.5
Fuel Consumption, FC, kg/hr = 2.8 9.0

Substituting values for point 1 in Equation 5.1, gives

B  = 
FC
 N2  =   

2.8
23902  = 4.9 x 10-7

Substituting values for point 2 in Equation 5.1, gives

A  = 
FC - B N2 

 Q   = 
 9.0 - 4.9 x 10-7 (2250)2

 33.5     = 0.19

Thus fuel consumption,  FC =  0.19 Q + 4.9 x 10-7 N2 (5.2) 

Problem 5.1

Using Equation 5.2, estimate the fuel consumption for the Farmland tractor for engine power, Q = 15 kW and
engine speed, N = 1600 rpm. Compare the answer with the measured value as shown in Figure 3.4.

For Q = 15 kW and N = 1600 rpm, from Equation 5.2,

FC = 0.19 x 15 + 4.9 x 10-7 x 16002 = 2.85 + 1.25 = 4.1 kg/hr

From the specific fuel consumption lines on Figure 3.4 for Q = 15 kW and N = 1600,  SFC = 250 g/kWhr.

Measured  FC = 250 x 15 = 3.8 kg/hr

The predicted value is within 8% of the measured value which is about the accuracy that can be expected with
the empirical approach.

5.3   TRACTIVE PERFORMANCE MODELLING     

5.3.1 Parameters

In the empirical prediction of tractive performance, only one soil parameter is measured for the prediction of
both tractive force and rolling resistance. This parameter, known as the 'cone index', is not dependent on the
measurement of deformation or sinkage as is required in the determination of the respective moduli in the
theoretical approach.

Its measurement, being so simple, allows a rapid survey of the area of interest and incidentally reveals the great
variability that frequently exists in both time and place, particularly due to the variation in soil texture and the
effect of moisture content.

The development of the algorithms that constitute the tractive model requires an extensive series of
measurements of cone index and corresponding tractor performance as reported by Frietag (1965), Wismer and
Luth (1974), Gee-Clough et al (1978) and Parkhill (1986).
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Figure 5.2: Variation of coefficient of rolling resistance with mobility number.
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(a) Cone index

The soil parameter for empirical prediction of tractive performance is based on the force (kN) to push a circular
cone (base area = 0.5 in2;  322 mm2)  shown in Figure 5.1(a) into the soil at a constant speed of 72 in/min (30
mm/sec) (ASAE, 1998).

The parameter, termed the cone index is given by,

 CI  = 
 Force on cone 

 Base area of the cone     kPa (5.3)

The passage of the cone into the soil is resisted by the normal and soil - metal resistance forces as suggested in
Figure 5.1(b). These in turn will depend on the strength and compressibility of the soil and soil / metal sliding
characteristics of the cone surface all of which will depend on the soil texture, moisture content, etc.

The cone index does not therefore represent a soil 'property' as such but a complex and ill defined parameter or
measure of soil 'strength' and deformability; it is assumed to be a correlate for tractive force and rolling
resistance.

Typical values of cone index are given by Dwyer (1976) as shown in Table 5.1.

Surface Condition Cone Index, kPa

Dry  grassland 1500
Dry stubble 1000
Wet stubble   500
Dry loose soil   400
Wet loose soil   200

Table 5.1: Soil cone index for various surface conditions. Reproduced from Dwyer et al (1976) ,
with permission of Silsoe Research Institute.

The interesting aspect of this table is that it is based on:
(i) soil 'condition' as represented by the terms loose, stubble (implying moderately firm) and grassland 
(implying firm )
(ii) moisture condition as implied by the terms dry and wet

Soil texture is not specified because the above variables are seen to have the most significant effect on cone
index.

(b)  Mobility number

The early work on the empirical prediction of the performance of wheels on soft surfaces was carried out by
Frietag (1965) in a military context. In this approach, dimensional analysis was used to effectively reduce the
number of variables and so simplify the prediction equations.

This was applied to wheels on agricultural soils as reported by Wismer and Luth (1974) also Dwyer et al (1976).
The latter authors used the cone index to calculate a dimensionless, tyre mobility number:

M = 
CI .b .d

W

δ
h

d

d + 0.5b
(5.4) 

where M = mobility number
CI = cone index, kPa
W = weight on tyre, kN
b, d, h = tyre width, tyre diameter, tyre section height, m
δ = tyre deflection under weight W, m

They also established the empirical relationships (for soft surface conditions) between tyre mobility number and
the performance parameters discussed in the following sections.
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Figure 5.3: Effect of surface / soil condition on rolling resistance of wheels of the Farmland tractor. 
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 Figure 5.4: Variation of tractive coefficient with wheelslip for three surface conditions
for the drive wheels of the Farmland tractor.
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5.3.2 Prediction of performance measures

In the following sections the various measures of performance have been plotted for the range of cone index
values over which the predictive equations apply. These range from 200 for loose wet soil to 1500 for dry firm
grassland (Table 5.1). They are based on the mobility number using the static weights on the wheels in Equation
5.4; a second iteration based on the dynamic weight gave no significant difference in the results.

(a) Rolling resistance

The following equation was fitted to the rolling resistance data by Gee-Clough et al (1978).

ρ  = 0.049 + 
0.287

M    (5.5)

This is shown plotted in Figure 5.2  and shows how the coefficient increases significantly for small values of M
(Equation 5.4) and hence for:

(i) small values of CI - soft surface
(ii) small values of d  - small diameter tyre
(iii) small values of b  - narrow tyre
(iv) small values of δ/h - stiff tyre
(v) large values of W - large weight

It also shows how the rolling resistance coefficient approaches a value of about 0.05 for firm surfaces (large
values of M and hence of CI, d and b etc).

The rolling resistance is then calculated as the product of this coefficient and the dynamic weight on the tyre as
discussed in Section 4.3.3

R  = V ρ (5.6)

Figure 5.3 shows by way of example the rolling resistance for the two rear and two front wheels of the Farmland
tractor when operating without drawbar pull on surfaces with a range of cone index values. The values of rolling
resistance also represent the power loss in kW for each metre / second of travel speed.

Empirical data for rolling resistance of various tyres carrying various weights are given in Dwyer et al (1976).

It is interesting to note that here, as in Chapter 4, no account is taken of the effect of wheelslip on rolling
resistance.

(b)  Tractive coefficient1

The following equations, which were fitted to the traction data by Gee-Clough et al (1978) are equivalent to
Equation 4.21.

 ψ = ψmax ( 1-e-ki) (5.7)

where ψmax = 0.796 - 
0.92
M   (5.8)

k = 4.838 + 0.061 M (5.9)

Figure 5.4 shows the variation in this tractive coefficient with wheelslip calculated for the Farmland tractor from
Equations 5.7 to 5.9.

                                                          
1 In the literature this tractive coefficient (represented here as ψ) is based on the 'net tractive effort' or the pull
generated by the driving wheels, ie, the tractive force less the rolling resistance of those wheels as defined in
Equation 4.5. The drawbar pull for the tractor requires the subtraction of the rolling resistance of the front wheels
as in Equation  5.10
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(c) Drawbar pull

The drawbar pull for the tractor is then calculated from the tractive coefficient for various wheelslips less the
rolling resistance of the front wheels.

P = Vr ψ − Vf ρf (5.10)

It is shown in Chapter 6 that the dynamic weight on the front wheels (Vf) and rear wheels, (Vr ) are a function of
P, the corresponding static weights Wf,  Wr  and the dimensions of the tractor.  Thus

Vr = Wr + P 
y'
x   

Vf = Wf - P 
y'
x   

Substituting in Equation 5.10 gives

P =   
ψWr  - ρfWf 

 1 - 
y'
x  (ψ+ ρf)

  (5.11)

Figure 5.5 shows the variation in  drawbar pull with wheelslip for the Farmland tractor for three surface
conditions.

(d) Drawbar power

The drawbar power is then calculated from the drawbar pull and the travel speed as in Equation 2.6.

DB power  = P V

= P Vo (1-i) 

= P 
π D Ne

q
 (1-i) (5.12)

Figures 5.6 and 5.7 show the variation in nominal drawbar power with drawbar pull and wheelslip for the
Farmland tractor in 5th gear and an assumed constant engine speed of 2250 rpm.  Again the performance is
shown for three surface conditions.

It will be noticed that the maximum drawbar power and the wheelslip at which it occurs are both dependent
significantly on the surface condition.
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(e) Tractive efficiency

The tractive efficiency is based on an equation of the form given in Equation 2.10.

ηt  =  
P

P + R  (1-i)   

For the tractor as a whole this includes the rolling resistance of the front wheels. Substituting for P and R from
Equations 5.6 and 5.10, respectively gives:

ηt =  
Vr ψ - Vf ρf

 (Vr ψ − Vf ρf) + Vf ρf + Vr ρr 
   (1−i)

=  
P

 Vr (ψ + ρr)    (1−i) (5.13)

Figure 5.8 shows the variation in tractive efficiency with wheelslip for the Farmland tractor for the three surface
conditions. This will be the same for all gears (speeds) because Equation 2.10 is independent of speed.

Again it will be noticed that:
(i) the maximum tractive efficiency and the wheelslip at which it occurs both depend significantly on the 

surface condition.
(ii) the wheelslip at maximum tractive efficiency is much less than that at maximum drawbar power.
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5.4   TRACTOR  DRAWBAR  PERFORMANCE2

When the empirical  models of the engine and the tractive process are combined we obtain a set of graphs
representing the drawbar performance of the tractor as a whole.  These may be plotted in various ways to
illustrate aspects of the performance that are of interest; in the following, the various measures of performance
are plotted against drawbar pull as the independent variable.

5.4.1  Performance in various gears

Figure 5.9 shows the results of an analysis of the performance of the Farmland tractor at maximum governor
setting with maximum ballast (6kN) on firm grassland (CI = 1500 kPa) . Where applicable, the corresponding
envelopes of performance, as discussed in Section 2.2.5, are also included. The graphs have been truncated in the
full fuel range for clarity, For the cone index and weight values considered, three of the gears are limited by
engine torque and five are limited by wheelslip.

Figures 5. 9 (a) - (c) show the graphs of travel speed, drawbar power and tractive efficiency versus drawbar pull.
There is only a single graph for wheelslip and tractive efficiency because it is assumed that the travel speed and
power losses due to wheelslip and rolling resistance are independent of speed and hence gear.

Figure 5.9 (d) and (e) shows the graphs of fuel consumption and specific fuel consumption versus drawbar pull.

The shape of these graphs is consistent with that which would be expected on the basis of the simple theoretical
analysis (for torque limited gears) given in Chapter 2 and the experimental results given for all gears when the
tractor is tested on a firm surface as given in Chapter 3.

                                                          
2 The assistance of Mr. G. Parkhill  in providing the data and algorithims for this section is gratefully
acknowledged.
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5.4.2 Distribution of power components

Another interesting way to illustrate the performance of the tractor is to calculate the distribution of the
components of the total engine power and plot them in absolute and percentage terms. Figure 5.10 (a) and (b)
shows this for the Farmland tractor at maximum governor setting with maximum ballast (6 kN) operating in 5th
gear on a surface with CI = 1500 kPa (firm grassland).  Power losses in the transmission were assumed to be 4%
of the total power being transmitted.

Figure 5.10 (c) and (d) shows the distribution for the tractor in the same condition but with soft, wet surface for
which CI = 200 kPa. For this gear on both surfaces, the tractor performance is limited by wheelslip.

(i) Power losses due to wheelslip, which arise from the relative motion of the wheel and ground surface, 
increase as the drawbar pull increases from the defined zero value at zero drawbar pull to 96% for the 
maximum sustained pull when the wheelslip is 100%.

(ii) In terms of the empirical model, the rolling resistance force for both front and rear wheels is assumed to
be constant (neglecting the effect of weight transfer); no account is taken of the effect of wheel sinkage
due to wheelslip on the rolling resistance of the rear wheels. These power losses therefore decrease as
the travel speed decreases due to increased wheelslip. They are a large percentage of the total losses at
small  drawbar pulls particularly for soft surface.

(iii) After losses are considered, the remaining power appears at the drawbar. It reaches a maximum when
the increase in drawbar power due to increased drawbar pull just balances the increase in power losses
mainly due to the increase in wheelslip. The drawbar power, expressed as a % is, in effect, the tractive
efficiency; this reaches a maximum at a lower drawbar pull and wheelslip than does the absolute value
of drawbar power.

The greater drawbar pull, the smaller power losses and the increased drawbar power that the tractor develops on
the firm surface (a) and (b), compared to that on the soft surface (c) and (d), can be seen.
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   Figure 5.11  Drawbar performance envelopes for
   Farmland tractor on soils, CI = 200, 500, 1500 kPa; 
   ballast = 0, 3, 6 kN. Some graphs omitted and 
    truncated for clarity.
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5.4.3 Effect of surface and weight    

The graphs in Figure 5.9 show in detail the performance of the tractor in various gears and the envelopes within
which the tractor works. The influence of weight and surface condition on performance can be adequately shown
by omitting the detailed performance in the gears and considering only the performance envelopes.

Figure 5.11 shows the graphs of travel speed, wheelslip, drawbar power, tractive efficiency, drawbar specific
fuel consumption versus drawbar pull. Three values of cone index (CI = 200, 500, 1500 kPa) and 3 levels of
added weight (0, 3 and 6 kN). Some of the graphs have been truncated and others at 500 kPa have been omitted
for clarity.

(a) Drawbar pull

(i) Surface condition and, to a lesser extent, weight have a significant effect on the maximum drawbar pull.

(b) Travel speed and wheelslip

(i) Surface condition has a significant effect on travel speed and wheelslip at all drawbar pulls.

(ii) Weight has a small effect on travel speed except at high drawbar pulls. Its effect on wheelslip is 
significant at all drawbar pulls.

(c) Drawbar power and tractive efficiency

(i) Surface condition has a significant effect on maximum power and maximum  efficiency.

(ii) Weight has:
* a negative effect on maximum power and maximum efficiency for all surface conditions in the higher 
   gears and lower wheelslips where rolling resistance losses predominate.
* a positive effect on maximum power and maximum efficiency for all surface conditions in the lower 
   gears and higher wheeslips where these losses predominate.

These effects are illustrated by the fact that:
* for gears giving maximum power and efficiency at drawbar pulls less than about 7 kN, ie higher

gears, adding weight decreases the maximum power and maximum efficiency.
* for gears giving maximum power and efficiency at drawbar pulls greater than about 7 kN, ie lower 
  gears, adding weight increases the maximum power and maximum efficiency.

(iii) Surface condition and weight influence the drawbar pull at which maximum power and maximum 
efficiency occur.

(d) Drawbar specific fuel consumption

(i) Cone index has a significant positive effect (reducing SFC), particularly at high drawbar pulls.

(ii) Weight has a
* a negative effect (increasing SFC)  for all surface conditions in the higher gears and lower drawbar

pulls.
* a positive effect ( decreasing SFC) for all surface conditions in the lower gears and higher drawbar

pulls.

These effects are associated with the performance described in (c) (ii) above.

(iii) Surface condition and weight influence the drawbar pull at which minimum SFC occurs.

It will be seen from the above that surface condition has the major effect on tractor performance. Optimum
performance will be achieved when the tractor is set up with tyres of a size and with a weight that minimizes the
losses from both rolling resistance and wheelslip.

The other factor which is not shown by the above is the need to avoid excessive soil compaction. If additional
weight is required for tractive purposes, fitting larger tyres, which allows a greater weight to be carried without
excessive surface pressure, will usually be desirable.
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5.5 CONCLUSION

As illustrated in the above examples, empirical modeling provides a powerful analytical tool to investigate the
relationships between the tractor parameters and the performance variables. Further experimental work and
development of the models will improve their capabilities and provide the user with further assistance in setting
up the tractor. This requires consideration, not only by the appropriate tractor parameters but also the choice of
implement size to give the appropriate drawbar pull. These matters are discussed in Chapter 7.

Performance models which use data in real time from an operating tractor and a local or global positioning
system are now available (Yule, et al, 1999). These will allow the operator and / or the control system to 'learn'
from its previous 'experience' and so develop strategies to achieve optimum performance under varying
conditions in the field.

Problem 5.2

Determine the model parameters for a local tractor and plot its performance as described  above.

Repeat the analysis for the tractor with:
(i)      smaller tyres
(ii)     larger tyres
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CHAPTER  6

HITCHING  AND  MECHANICS  OF  THE  TRACTOR  CHASSIS   

6.1  INTRODUCTION

It was shown in Chapters 4 and 5 how the weight on the wheels of a tractor determines its tractive force and
rolling resistance, hence its drawbar pull and tractive efficiency.

This weight  depends on:

(i) the static forces, viz,
* the weight of the tractor
* that part of the implement weight (if any) that is carried by the tractor

(ii) the effect on the tractor of the dynamic forces arising from the action of the implement, viz,
* draught (horizontal) force(s)
* vertical force(s)

In designing and using the tractor - implement system, it is desirable to take advantage of all these forces to
increase (and control) the weight on the tractor wheels while still ensuring the satisfactory performance of the
tractor and the implement.  For a given optimum weight on the wheels, the more that is provided by the dynamic
effects, the less that has to be provided by the static weight. The three-point linkage system introduced by
Ferguson, which made significant use of the dynamic forces on the implement  to provide weight on the driving
wheels, allowed the introduction of a very light tractor. This feature is now used on most small to medium sized
tractors.

Before considering the mechanics of the tractor chassis we need to review the methods of hitching (attaching)
implements to the tractor as these have a significant influence on how the implement forces determine the
dynamic weight on the tractor wheels. The following gives a brief review of those aspects of implement hitching
that are relevant to the performance of the tractor. Other details of the various systems may be found in the
references at the end of this Chapter.

6.2  IMPLEMENT  HITCHING

6.2.1  Introduction

The hitching of implements and the mechanics of the chassis may be studied by considering two perpendicular
planes:

(i) the vertical longitudinal plane down the centre line of the tractor in which we consider the symmetrical
forces such as the weight , the wheel  reactions and the direct effect of the implement forces.

(ii)  the horizontal plane where the moment effect of the implement forces which are not symmetrical (eg,
unsymmetrical or off-set implements and all draft forces in turning) will affect the attitude and steering of
the tractor. These influence the     operation     of the tractor but are not relevant  to the     normal    (straight ahead)
performance     of the tractor; they will not be considered further in this book..

The hitching of implements to tractors may be made in various ways and places. For this purpose the tractor has
one or more standard attachment locations at the rear and for some tractors at the front, in the form of:

(i) linkages for 'adjustable' attachment; adjustment in the vertical plane is usually made by means of an in-
built hydraulic (hydro-static) pump driven by the tractor engine.

(ii) drawbars for 'fixed' attachment; adjustment is made manually or with 'external' or 'remote' hydraulic
cylinders supplied with oil from the in-built hydraulic pump in the tractor.

The standard hitching systems may be classified as follows.
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(a)(a)

(b)

Figure 6.1: Trailed (one point) implement hitches (a) without and (b) with vertical force.

 

Figure 6.2: Semi-mounted hitch where the front of implement is carried on a horizontal pivot.

Figure 6.3: Fully mounted, rear three-point linkage hitch. 
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6.2.2  Hitching systems

(a)       Trailed - one point hitch    

Here the implement is attached to the tractor at one (drawbar) hitch point. This represents the simplest
arrangement, but it provides a minimum in the way of implement control and weight transfer.  The implement,
which is usually carried on wheels (for support and / or depth control), is free to move in both the horizontal and
vertical planes as it follows the varying ground surface.

Two common arrangements can be identified.

(i) where the implement is fully carried on its wheels and its drawbar is pivoted at both ends; the implement
force is essentially horizontal, Figure 6.1 (a).

(ii) where the front of the implement (such as in an unbalanced trailer or similar two-wheeled implement) is
carried on the tractor drawbar and the rear on a wheel or wheels, Figure 6.1(b). There is usually a
significant static vertical component in the implement attachment force and hence the weight transfer
from implement to tractor rear wheels is greater than in (i) above.

The trailed hitch is least effective in terms of both weight transfer and implement control when compared with
other systems (see Section 6.4.3).  The former weakness has been overcome by the development of a weight
transfer hitch for trailed implements in which part of the weight of the implement and / or the downward soil
forces are supported by the tractor rear wheels. This system is considered in Section 6.4.4(c).

(b)       Semi-mounted - two point hitch    

In this arrangement the front of the implement is carried on the lower links of the tractor and the rear on a castor
wheel as in Figure 6.2.

In the vertical, longitudinal plane the implement is free to pivot about the outer ends of the lower links and hence
it behaves as the one point hitch above, ie, it is free to follow ground undulations. It is, however, rigid in the
horizontal plane and is therefore frequently used for un-symmetrical implements having side forces, such as
mouldboard or disc ploughs, or offset draught forces, such as forage mowers.

There is  usually a significant static vertical component in the implement attachment force because part of the
weight of the implement and of the downward soil forces are supported by the tractor. Thus weight transfer
would be greater than in a corresponding trailed implement; see Section 6.4.3.

(c)        Fully mounted - three point hitch    

Here the implement is attached to the tractor by means of the three-point linkage as shown in Figure 6.3. In this
side view the lower two points are coincident; the upper point is midway between , but above the lower two.

This system totally constrains and allows complete control of the implement. It is not free to swing in space like
the trailed implement, nor in the vertical plane like the semi-mounted;  it must operate in the position determined
for it by the linkage.  The exception to this statement is that the implement is usually free to rise, ie, it is not held
down by the linkage. If it does rise, it will be due to the upward soil forces being greater than implement weight;
it will, however, move in a way determined by the kinematics of the linkage.

In the vertical longitudinal plane (Figure 6.3) the linkage has the form of a mechanism known as a 'four link
chain', the characteristics of which are treated in books on kinematics. We can identify the four links as shown in
Figure 6.4:
(i) the two lower links (which act as one in the vertical plane)
(ii) the upper or top link
(iii) the implement frame or pedestal
(iv) the tractor chassis.
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The significant point is 'v' at the intersection of the upper and lower links. When discussing the       motion     of the
implement it is termed the ‘instantaneous centre of rotation’; at the instant shown, the implement       moves     as if it
was    rotating     about that point. The point 'v'  itself moves from instant to instant, hence the motion of the
implement is quite complex.

When discussing the    forces    on the implement 'v' is termed the virtual or effective hitch point; at the instant
shown, the implement behaves as if it were     attached     to the tractor at that point.

As an example, Figure 6.5(a) shows a plough on the three-point linkage as it enters the ground.  It will be seen
that the effective hitch point is below the ground and the line of draft passes above it. The soil force has a
clockwise moment about that point, thus the plough is being pulled    into    the ground.  As this occurs, the effective
hitch point rises and eventually an equilibrium is reached where the downward force of soil on the plough is just
balanced by the upward force of the tractor on the plough.  The line of pull passes    through     the effective hitch
point, now above the ground surface, as shown in Figure 6.5(b);  this tends to add weight to the rear wheels of
the tractor.

The above is termed the 'free link' condition but it is not suitable for normal operation because any variation in
the direction of the soil force will cause the implement depth to change . Usually, the linkage is arranged so that
the implement reaches the desired working depth before the effective hitch point rises up to the line of draft.
The implement is thus kept from reaching the equilibrium condition; the soil forces tend to pull the plough in
deeper, but the linkage stops this occurring.  The weight of the plough and the downward acting soil forces are
thus transferred to the rear wheels of the tractor.  The line of draft passes above the effective hitch point, as
shown in Figure 6.5(c);  the former cannot be located from the latter as in the Figure 6.5(b). Further discussion is
given in Dwyer (1974) and Inns (1985).

Problem 6.1

Take measurement of the three-point linkage system on a tractor and associated soil engaging implement.  Plot
on drawing paper the position of the instantaneous centre of rotation / virtual hitch point if the implement were
raised and lowered to below the ground level.  Alter the linkage or use another type of implement and repeat the
above.

6.3 TRACTOR  CHASSIS  MECHANICS

The term 'mechanics' here refers to an analysis of the forces that act on the tractor chassis. The major force is
that of gravity and is known as the weight. This is sometimes (loosely) given, and spoken of, in units of mass
(kg); in engineering analysis (concerned with statics) all such 'weights' should be converted to force units (kN).

6.3.1 Centre of gravity

The centre of gravity is the point at which the whole of the mass and the weight of the tractor may be considered
to act. Its location depends on the disposition of the various masses that comprise the tractor. Any analysis of the
tractor chassis requires the location of the centre of gravity to be known. It is usually specified in relation to the
rear axle as shown by point G in Figure 6.6.

 (a)      Longitudinal location    

The location of the centre of gravity in the longitudinal (x) direction may be found by measuring the weight on
the front (Wf) and rear (Wr) wheels.

Application of the force equilibrium condition gives the tractor weight, W:

W =  Wf  +  Wr

Application of the moment equilibrium condition gives the required longitudinal location, xr as shown in

Figure 6.6(a).
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For the tractor take moments about O:

W . xr =  Wf . x

xr =  
Wf
W

   x (6.1)

The wheel base (x) between the front and rear axles is usually given in the manufacturer's specification or can be
measured directly.

For most common rear wheel drive tractors  xr is approximately 30 % of x; this is also the % of the static tractor

weight that is on the    front    wheels.

(b)      Vertical location    

The location of the centre of gravity in the vertical (y) direction is more difficult. The common method is to lift
the front (or rear) of the tractor (as shown in Figure 6.6(b)) and measure the weight on the front wheels (W'f) in

the raised condition. The following is similar to Barger et. al., (1952).

Application of the moment equilibrium condition gives the required vertical location, yg.

For the tractor  take moments about O:

x'r =  
W'f
W

   x" (6.2)

The geometry of the positions of the centre of gravity (Figure 6.1(c)) gives:

z  =  
x'r

cosβ 

 yg =  
xr - z

 tanβ  

Substituting for z gives

yg   =    
xr -  

x'r
cosβ

 tanβ (6.3) 

where x'r is as calculated from Equation 6.2 above.

and β =  β1  +  β2

 =  atan  
rr - rf

x
    +  atan  

y' - rr
x''

   

Inspection of Equation 6.3 shows that if the difference between xr' and 
xr'

cosβ   is to be accurately calculated, β

needs to be relatively large and / or accurately determined.

Problem 6.2

By a similar measurement and analysis to the above find the location in the vertical and longitudinal directions
of the centre of gravity of a two wheeled tractor or trailer.
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6.3.2  Issues in chassis mechanics

Two aspects of the mechanics of the tractor chassis, which are of importance to the performance of the tractor,
can be identified:

(a)       Weight transfer

For a tractor under dynamic (here meaning 'operating') conditions, the weight on the wheels will, in general, be
different from the static values. These changes are termed 'weight transfer' although of course nothing is
'transferred'. The discussion here is limited to the changes in the v    ertical longitudinal plane,    ie, from front to rear
and vice versa because these have the greatest influence on tractor     performance    .

Weight transfer is a normal outcome of the action of the forces generated on the tractor chassis by the ground
and by the implement.  It occurs whenever and however the tractor is loaded, including the ‘no’ load case where
there is some weight transfer due to the torque on the rear wheels required to propel the tractor against the
rolling resistance of all the wheels..

It is also normally a desirable  outcome because  the tractor is designed to take advantage of it by having at least
some of the driving wheels at the rear where, for normal forward operation, the increase in rear wheel weight is
proportional to the drawbar pull. In reverse gear and in the 'over-run' condition, (the implement pushing the
tractor) the forces toward the front of the tractor transfer weight    from      the rear wheels    to     the front wheels, a fact
which affects the performance of the tractor in this type of work and when braking.

A more detailed discussion of the general subject of weight transfer is given in Gilfillan (1970), Liljedahl et al
(1979) and other references given at the end of this Chapter.

(b)     Instability

Instability occurs when the weight transfer is sufficient to cause the tractor to tip over rearwards.  I      mpending
instability (where the front wheels leave the ground and the tractor is on the point of becoming unstable) is
considered here because it is a limiting case of  the weight transfer and hence of tractor operation.  It is an
undesirable situation because it represents loss of steering control and may lead on directly to     actual    instability.
Such a situation is partly avoided by inherent features of the design of the tractor-implement system and partly
by its operation in a way that avoids reaching that condition. Usually the wheels slip before instability occurs.

An understanding of the actual process of tipping over in the vertical longitudinal plane which may follow
requires a different, more complex dynamic analysis that includes, among other matters, the inertia of the tractor
chassis and of the implement, also the inertia and stiffness of the transmission to the rear wheels. This and the
analysis of instability in the lateral vertical plane (roll over) are not relevant to tractor performance as such; they
are dealt with in  Liljedahl et al (1979) and other references given at the end of this Chapter .
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6.3.3 Analysis  and assumptions

The following analysis of the tractor in the longitudinal, vertical plane is limited to the calculation of wheel
weight during steady state operation in normal work (Section 6.4) and to the prediction of the conditions for
impending instability (Section 6.5).

Although the tractor and implement are moving, the assumption of steady state operation implies that there are
no inertia forces; the forces are doing external work but are not causing any acceleration. Hence the principles of
statics and the conditions for static equilibrium of rigid bodies can be applied.

Three independent equations of equilibrium (chosen from the following) can be written:

(i) the sum of the forces in any two perpendicular directions are zero. The two directions usually chosen are
those parallel to and perpendicular to the ground surface.

(ii) the sum of the moments about any two points in the vertical longitudinal plane are zero. The two points
usually chosen are the wheel / ground contact points or the centres of the wheels.

In simple situations it may be sufficient to consider the whole tractor as a rigid body. Where the external forces
are known the weights on the wheels can be calculated directly.

However it is sometimes convenient to consider the tractor as composed of two rigid bodies. One, the drive
wheels, rotate about a centre located in the other - the chassis of the tractor. This occurs under the action of the
torque acting on them which is internally produced by the engine. Any such analysis must apply appropriate
constraints ie, that the forces and moments on each are equal and opposite.

In this analysis and the worked examples, the following simple assumptions are made:

(i)  forward motion is uniform; this assumes constant implement forces and no acceleration

(ii)  lines of forces on wheels are either tangential or radial or may be resolved as such; wheel sinkage and tyre
distortion (but not normal tyre deflection) are neglected

(iii) the tractor is symmetrical about the longitudinal vertical plane; all the forces and moments may be
considered to act in this plane

(iv) other forces, such as the change in position of the fuel and oil in the tractor on sloping ground, air
resistance and other minor forces are neglected

The analyses of tractors where other more complex assumptions are made are given in the references at the end
of this Chapter.

The tractor considered in the general analysis is as shown in Figure 6.7.

The implement force P acts through the point (x', y') at an angle θ to the ground surface. Note that it is not
shown '    attached'    to the chassis at the rear of the tractor because, in general, it may act on the tractor or attached
implement at any point in the plane.

For a trailed hitch shown in Figure 6.1, this point would be the drawbar / implement attachment point. For the
tractor in Problem 6.7,  P is the weight of a tank and water (a vertical force) carried on the front. Care must
therefore be taken to ensure that the direction and the moment of P is correctly included by appropriate choice of
θ and the sign for x'.

The solution of the problems given in the following sections will be greatly  facilitated by coding of Equations
6.4 and 6.5, etc, on a computer spread sheet.
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Figure 6.7: Tractor details for weight transfer analysis
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6.4  WEIGHT  TRANSFER

6.4.1 Four wheel tractor

(a)      Analysis    

Consider rear wheel drive tractor on a slope as shown in Figure 6.7.

For the tractor1, take moments about C:

Vf  x +  W sinα yg  +  P sinθ  x'  +  M =  W cosα xr +  P cosθ y

Vf  =  W cosα  
xr
x

   +  P cosθ  y
x
   -  

M
x

   - Wsinα 
yg
x

   -  P sinθ 
x'
x

  

For the wheels, take moments about C:

M   =   H . r

Resolve parallel to the slope:

H  =  W sinα +  P cosθ

Substitute for  M and H above:

Vf   = W cosα  
xr
x

  +  P cosθ  
y
x
   -  W sinα  

r
x
   -  P cosθ  

r
x
   -  W sinα 

yg
x

   -  P sinθ x'
x

 

Combining:

Vf   = W cosα 
xr
x

  -  W sinα 
r+yg

x
   -  P cosθ  

r-y
 x

    -  P sinθ  
x'
x

 

 

   Vf   = Wf  -  W sinα 
r+yg

x
   -  P cosθ  

y'
x

     -  P sinθ  
x'
x

 (6.4)

Problem 6.3

Show  that the weight on the rear wheels (Vr) perpendicular to the slope is given by:

Vr   =  Wr + W sinα 
r+yg

x
   +  P cosθ  

y'
x

   +  P sinθ  
x+x'

x
 (6.5)

                                                
1 In the following, the total weight of the tractor (W) and the distance to its centre of gravity (xr ) have been

used; this is statically equivalent to using the weight of the body (tractor less rear wheels) and the distance to its
centre of gravity.



6.12

     The Mechanics of Tractor - Implement Performance: Theory and Worked Examples - R.H. Macmillan        

(b)      Explanation of terms

The terms in Equations 6.4 and 6.5 can be identified as follows:

(i)  Wf , Wr the static weight on the wheels when the tractor is on the slope

(ii) W sinα 
r+yg

x
  the moment effect of the weight component down the slope, decreasing the front 

wheel weight and increasing the rear.

(iii) P cosθ  
y'
x

  the moment effect of the implement force component down the slope, decreasing the 

front wheel weight and increasing the rear.

(iv) P sinθ  
x'
x

 the moment effect of the implement force component perpendicular to the slope, 

decreasing the front wheel weight.

(v)  P sinθ  x+x'
x

 the direct (P sinθ) and the moment effect (P sinθ x'
x

 ) of the implement force 

component perpendicular to the slope, increasing the rear wheel weight.

Referring to the Equations 6.4 and 6.5, note that the moment effect of the component of the drawbar pull  down
the slope, P cosθ,   has two effects:

(i) P cosθ  y
x
 :     increases     Vf  and     decreases      Vr with moment arm y

(ii) P cosθ  r
x
      decreases      Vf  and    increases     Vr with moment arm r

The net effect of P cosθ  is therefore the difference between these two, ie , P cosθ  r-y
 x

   = P cosθ  y'
x

 .

This fact gives rise to the idea that if the drawbar pull acts below the rear axle, its moment, Pcosθ . y,    increases    
Vf and holds the front of the tractor     down    . While this is true, it omits the more important, unrecognised aspect
that a usually larger moment, Pcosθ . r, tends to     decrease     the weight on the front wheels.

Problem 6.4

Check Equations 6.4 and 6.5 by taking moments about the ground contact points O and Q, respectively.
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(c)      Special cases    

The following special cases are of interest:

(i)  If y' increases,  ie, the point of action (eg, the drawbar) is raised, y decreases and the weight transfer,

P cosθ  
r-y
x

  increases; the tractor may reach the condition of impending instability when Vf = 0 (Refer

Section 6.5)

(ii)  If  y' = 0, the point of action (the drawbar) is at ground level, y = r;  there is no weight transfer due to P.

(iii) If y' is negative, the point of action is below ground level (eg, as is possible with a three point linkage or

with the drawbar in a trench), y is greater than r,  the term  P cosθ  y'
x

  becomes positive in Equation 6.4

and negative in Equation 6.5, ie, weight is transferred    from the rear to the front    wheels. (Refer Section
6.4.3.

 (iv)  If  θ  =  0, ie, the implement force is parallel to the ground

Vf  =   W cosα  
xr
x

   -  W sinα  
r+yg

x
   -  P 

y'
x

 Vr  =   W cosα  
xf
x

  +  W sinα 
r+yg

x
   +  P 

y'
x

 

(v)  If  also, α  =  0,  ie,  the ground is horizontal

Vf  =  W  
xr
x

   -  
Py'
x

   =  Wf  -  
Py'
x

  Vr  =  W  
xf
x   +  

Py'
x

   =  Wr  +  
Py'
x

  

(vi)  If  also, P  =  0,  ie, there is no implement force

Vf  =  W  
xr
x

   = Wf Vr  =  W  
xf
x    = Wr

Problem 6.5

Repeat the analysis in Section 6.4.1  for the tractor travelling     down     the slope where the implement force acts
forwards and  downwards (as when towing an unbalanced trailer); show that the wheel weights are:

Vf  = Wf  +  W sinα 
r+yg

x
   +  P cosθ 

y'
x

     -  P sinθ 
x'
x

 (6.6) 

       Vr  = Wr   -  W sinα 
r+yg

x
    -  P cosθ 

y'
x

    +  P sinθ 
x'+x

x
 (6.7)
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Problem 6.6

Consider the Farmland tractor with a spray tank mounted on the three-point linkage at the rear.

The following data apply:
Weight of spray tank when empty = 60 kg
Centre of gravity of the tank and water  = 1.5 m from the rear axle

= 1.0 m from the ground

(i) If there is 210 kg of water in the tank,  what is the weight on the front wheels for the unit moving on
horizontal ground?

(ii) What weight of water can be carried and what will be the tractive coefficient (based on the total tractive

force) if the unit is moving up a 10o slope and the weight  on the front wheels is to not be less than
4kN?

(iii) What will be the maximum weight on the front wheels and the tractive coefficient as the tractor empties

the spray tank  while travelling down a 10o slope ?

Solution Part (ii)

From Equation 6.4:

    Vf =  Wf - W sinα 
r+yg

x
   -  P cosθ  

y'
x

   -  P sinθ  
x'
x

   

 P   =  
W cosα xr - W sinα (r+yg) - Vf x

 cosθ  y' + sinθ  x'
 

=  
27.9 (.532 - .133) - 7.52 

.174 + 1.48
   = 2.18 kN  = 224 kg

Weight of water = 224 - 60 = 164 kg

From Equation 6.5

Vr       =  Wr + W sinα 
r+yg

x
   +  P cosθ  

y'
x

   +  P sinθ  
x+x'

x
 

=  27.9(.985 
1.34
1.88

  + .174  
.765
1.88

  ) + 2.18 (.174 
1

1.88
  + .985  

3.38
1.88

 )

           = 19.6  + 1.97 + .20 + 3.89

                      =  25.6 kN

ψ'      =   
W sinα +  P cosθ

 Vr
   =  

27.9x .174 +  2.18 x .174
 25.6

  =  0.20

Answers: (i) 5.92 kN;  (ii) 164 kg, 0.20; (iii) 9.48kN, -0.27
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Problem 6.7

Repeat Problem 6.6 with the spray tank mounted on the front of the tractor with its centre of gravity 1.5 m
from the    front    axle.

(i) If there is 210 kg of water, what is the weight on the front wheels for the unit moving on horizontal
ground?

(ii) What weight of water can be carried and what will be the tractive coefficient (based on the total tractive

force) if the unit is moving up a 10o slope and the front wheel weight is to not exceed 10 kN?

(iii) What weight of water can be carried and what will be the tractive coefficient (based on the total tractive

force) if the unit is moving down a 10o slope and the front wheel weight is to not exceed 14 kN?

Answers: (i) 12.8 kN; (ii)187 kg, 0.26; (b) 165 kg; -0.33

Problem 6.8

Consider the Farmland tractor operating up a slope α = 15o with a drawbar pull angle θ =10o.

Use Equation 6.5  to calculate the :
(i)  maximum drawbar pull if the tractive coefficient ψ (based on the total tractive force) = 0.8
(ii)  rear wheel weight
(iii) percentage contributions of the terms in Equation 6.5 to the tractive force.

Note: An iterative method is required to solve this problem because the rear wheel weight depends on the
drawbar pull (due to weight transfer) and the drawbar pull (as determined by the tractive coefficient) depends
on the rear wheel weight.  Assume an initial value for P and calculate Vr,  H and then P; if the initial value of
P is carefully chosen, the answer will be obtained with sufficient accuracy with two iterations.

Answers: (i) 17.1 kN; (ii) 30.1 kN; (iii) 64%, 10%, 13%, 13%

6.4.2 Weight transfer with rolling resistance

The above analysis neglects any effect of rolling resistance. We may, however, include this by introducing a
force acting along the slope (opposite the direction of motion) as a further force to be overcome by the tractor.

As discussed in Section 4.3.3 the rolling resistance may be expressed in terms of a coefficient (ρ) as

Rolling resistance =  ρ  .  Weight on wheel

Here the weight will be the wheel weights perpendicular to the slope, ie, Vf and Vr as given by Equations 6.4

and 6.5 above. The rolling resistance for the tractor may be estimated by combining the effect on the front and
rear wheels by considering a coefficient for the tractor as a whole.

R =  ρ (Vf +  Vr)

=  ρ (W cosα  +  P sin θ)

The total tractive force

H =  W sinα  +  P cosθ  +   ρ (W cosα  +  P sin θ)
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Figure 6.8: Tractive coefficients required for the Farmland tractor working up and down the slope :
(a) carrying a weight of 100, 300 and 500kg with rolling resistance coefficient of 0.05
(b) Carrying a weight of 300kg with rolling resistance coefficient of 0.025 (bitumen road)and 0.1 (ploughed soil).
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We can specify the tractive force required (for a rear wheel drive tractor) in terms of the gross tractive
coefficient.

ψ' =  
Tractive force 

 Rear wheel weight
 

=   
W sinα  +  P cosθ  +  ρ (W cosα  +  P sinθ)

Wr + W sinα 
r+yg

x
  +  P cosθ  

y'
x

  +  P sinθ  
x+x'

x

 (6.8)

Problem 6.9

The Farmland tractor carries a fertilizer distributor mounted on the rear  three-point linkage.
The following data apply:

Centre of gravity of distributor and fertilizer, m: 1.5 behind tractor rear axle
1.0 above ground

Total weight of the distributor and fertilizer, kg: 100 (empty),
300
500  (full)

Rolling resistance coefficient 0.025 (bitumen road),
0.050 (firm surface)
0.1 (ploughed soil)

Angle of slope (up and down), o 0, 5, 10, 15, and 20

Calculate the traction coefficient required to drive the tractor and distributor under various conditions.  Hence
identify conditions where it may be possible and safe to drive     up     a slope but unsafe to drive     down     it.

Solution

Results for some conditions which are given in Figure 6.8(a) for r=0.05 (firm conditions) show that the tractive
coefficient required:
(i)       increases with the angle of slope
(ii) decreases with weight carried, particularly for larger angles

Figure 6.8(b) shows that the tractive coefficient depends on the angle of slope and the rolling resistance. In the
example given for load =300 kg and ρ = 0.025 (bitumen road), ψ'(down) > ψ' (up) for slope >12o.

Problem 6.10

Repeat Problem 6.9 with the distributor mounted on the front of the tractor .

Assume that the centre of gravity of distributor and fertilizer is 1.5 m in front of the front axle and 1.0 m
above the front wheel  ground contact point .
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Figure 6.9: Slopes that can be negotiated for various traction coefficients, Problem 6.11
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Problem 6.11

The Farmland tractor operates with zero drawbar pull on a slope α . The maximum gross tractive coefficient is
ψ' and the coefficient of rolling resistance for the tractor as a whole is ρ.

(i) What is the maximum slope that the tractor can travel up without exceeding the maximum tractive force.

Resolving along the slope, Figure 6.7:
H  =  W  sinα + W  cosα ρ

At maximum gross tractive coefficient :
H  = Vr . ψ'

The dynamic weight Vr  on the rear wheels in operation is given by moments about Q:

 Vr . x =  W cosα xf + W sinα (r + yg) ]

  Vr =   
W cosα xf + W sinα (r + yg)

x
 

Substitute for H and Vr  above:

W  sinα + W  cosα  ρ =  [
W cosα xf + W sinα (r + yg)

 x
   ] ψ'

W sinα [1 - 
(r + yg)

 x
   ψ'] =  W cos α  [

xf

x
ψ' −  ρ]

tan αu  =  
ψ'  xf  - ρ x

x - ψ'(r+yg)
 (6.9)

(ii) Show that the maximum slope that the tractor can travel     down     without exceeding the maximum tractive
force is:

tan αd  =   
ψ'  xf + ρ  x

x + ψ' (r+yg)
 (6.10)

(iii) Plot tan αu and tan αd  for values of ψ' between 0.2 and 0.7 and ρ  = 0.05  and discuss the meaning of these

results.

Answer (iii)  See Figure 6.9
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Figure 6.10: Weight transfer with various hitching systems;
(a) trailed; (b) semi-mounted; (c) fully mounted
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6.4.3  Weight transfer with hitching systems

(a)       Analysis    

Considering the three common hitching systems described in Section 6.2.2 above, we are now in a position to
evaluate them with respect to weight transfer, ie, the increase in the weight on the rear wheels as a result of the
implement forces. This analysis does not take into account the weight of the implement, which is more
significant for the mounted and semi-mounted systems than for the trailed. However, it provides a valid
comparison of the relative advantages of weight transfer of the three systems on the basis of the soil forces and
of the conditions under which these advantages will be achieved.

Consider an identical cultivator, as shown in Figure 6.10 hitched, in the following ways:
(i)  trailed  on its own wheels
(ii) semi-mounted on the lower links of the tractor and a rear wheel
(ii) fully mounted on the three-point linkage.

In order to compare them it is necessary to determine the dynamic weight on the front and rear wheels of the
tractor for each  system; the same soil force S, acting at an angle θ to the ground surface as shown, is assumed
for each .

(i) Trailed

Resolving horizontally:

P =  S cosθ

Moments about Q for the tractor:
     Vr  x =  W  xf  + P y'

Vr =  Wr   +  
S cosθ  y'

x
 (6.11)

And

Vf =  Wf   -  
S cosθ  y'

x
 (6.12)

Weight transfer will occur if Vr  >  Wr ie, if  y' is positive, ie, if the drawbar is above ground level; it will be

increased by increasing the drawbar height, y'.

For a consideration of the implications of this, see the more general analysis of impending instability given in
Section 6.5.

(ii) Semi-mounted

Resolving horizontally:
     P  =  S cosθ 

The dynamic weight T on the tractor drawbar  is given by moments about A for the cultivator:

 T  a =  S sinθ  (a-b) + P y'  + S cosθ  z

where b gives the horizontal location of the soil force.

Substituting for P

 T =  S sinθ  
a-b
a    +  S cosθ  

z+y'
a

 

The dynamic weight on the rear wheels is given by moments about Q:

                    Vr  x = W xf  + P  y' + T (x+x')
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HITCHING
SYSTEM

CONDITION  FOR
WEIGHT  TRANSFER

EXPLANATION

TRAILED Vr >Wr unless y' negative Drawbar above ground level

SEMI MOUNTED Vr >Wr  always  - -

MOUNTED
Vr >Wr if  tan θ >  

z
x+x'+b

 

Vf <Wf if  tan θ > 
z

x'+b
 

Line of soil force passes above:-
front wheel/ ground contact point

rear wheel / ground contact point

Table 6.1:  Summary of conditions for weight transfer with various hitching systems

Vf < Wf

Vr  > Wr

Figure 6.11 Conditions for weight transfer with fully mounted implement.
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Substituting for T and P:

       Vr  x = W xf + S cosθ  y' + S sinθ 
(a-b)(x+x')

a   + S cosθ  
(z +y')(x+x')

a
 

       Vr =   Wr  + S sinθ 
(a-b)(x+x')

ax
   +  S cosθ [  

y'
x

  +  
(z +y')(x+x')

ax
  ]

=   Wr  + S sinθ 
(a-b)(x+x')

ax
   +  S cosθ  

ay'+  (z +y')(x+x')
ax

 (6.13)

Problem 6.12

Show that the weight on the front wheels of the tractor with semi-mounted implement is given by:

                Vf   =   Wf  -  S sinθ 
(a-b) x'

ax
   -  S cosθ  

ay'+(z + y')x'

ax
(6.14)

Weight transfer will occur if V r > Wr  which will always occur unless one of the following terms is negative and

greater in magnitude than the other.

The first term will be negative if b > a, ie,  the soil force is behind the wheel. The second will be negative if y' is
negative (below ground level) and greater than z or z is negative (above ground level) and greater than y'.

All of these conditions are unlikely to occur for a semi-mounted implement, hence weight transfer will always
occur.

(iii) Mounted

The dynamic weight Vr on the rear wheels is given by moments about Q for the tractor / implement system as a

whole:
Vr  x + S cosθ  z = W xf + S sinθ (x+x'+b)

Vr =  Wr + S sinθ  x+x'+b
x

   - S cosθ  
z
x

 (6.15)

The dynamic weight Vf  on the front wheels is given by moments about O for the tractor / implement system as

a whole:

W  xr  +  S cosθ  z =  Vf  x  +  S sinθ  (x'+b)

Vf =   Wf  - S sinθ  
x'+ b

x
  + S cosθ  z

x
  (6.16)

Increasing the length of mounted implements (hence increasing b) will increase the weight transfer to the rear

wheels due to the direct effect (S sinθ) and the moment effect (S sinθ  x'+b
x

 ) from the front wheels. The limit will

be the length and weight that will still allow the tractor to lift the implement without itself tipping up; weights
may be added to the front of the tractor to avoid this.
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Weight transfer will occur if:

Vr  >  Wr    

       S sinθ  
x+x'+b

x
 > S cosθ 

z
x
 

             tanθ >  
z

x+x'+b
 (6.17)

This implies that weight transfer to the rear wheels will  occur if the soil force passes above the    front    wheel /
ground contact point, Figure 6.11.

The above includes the contribution of the vertical component of the soil force (S sinθ) to the rear wheel weight.

Another measure associated with weight transfer from the front wheels in the mounted system is the condition
that

   Vf <  Wf

S sinθ  
x'+b

x
    >  S cosθ  

z
x
 

tanθ >    
z

x'+b
 (6.18)

This implies that weight transfer from the front wheels to the rear will occur if the soil  force passes above the
rear     wheel / ground contact point.  Further, weight transfer will increase as b increases, ie, the implement gets
longer.

(iv)  Summary

 A summary of the results of this analysis is given in Table 6.1.
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TOP GREATER THAN SIDE
if  line of soil force passes above:

        MOUNTED

SEMI MOUNTED
Axis of lower hitch points:

tan θ >  
z+y'

b
 

 SEMI MOUNTED

TRAILED
Intersection, drawbar line &
vertical line through front axle:

tan θ > 
z+y'

x+x'+b
 

Intersection, drawbar line &
vertical line as far in front of
soil force as wheel is behind it:

tan θ > 
z+y'
a-b

 

Table 6.2  Summary comparison of weight transfer effects for different hitching systems

mounted  
> trailed

= a-b a-b

mounted > 
semi-mounted

semi-mounted  
> trailed

Figure 6.12: Comparison of hitching systems on the basis of weight transfer
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(b)       Comparison of hitching systems

We seek to determine the conditions under which the weight transfer for each system in Section 6.4.3 (a) is
greater than the one above it.

(i)  Condition for  Vr (mounted) greater than Vr (semi-mounted) :

S sinθ 
x+x'+b

x
  - S cosθ  

z
x
   > S sinθ 

(a-b)(x+x')
ax

  +  S cosθ [  ay' + (z +y')(x+x')
ax

 ]

        sinθ [
x+x'+b

x
   -  

(a-b)(x+x')
ax

  ] >  cosθ  [ 
z
x
  +  

ay' + (z +y')(x+x')
ax

  ]

          sinθ [b(a+x+x')] >  cosθ  [(z +y')(a+x+x')]

 tanθ >   
(z +y')

b
 (6.19)

For the weight transfer of the mounted implement to be greater than that for the semi-mounted, the soil force
must pass above the lower hitch points; see Figure 6.12.

(ii)  Condition for  Vr (mounted) greater than Vr (trailed) :

    S sinθ  x+x'+b
x 

   - S cosθ  
z
x
   >   S cosθ  

y'
x

 

    sinθ  
x+x'+b

x 
 >  cosθ  z+ y'

x
  

      tanθ >   
z + y'

x+x'+b
 (6.20)

For the weight transfer for the mounted implement to be greater than that for the trailed, the soil force must pass
above the intersection of the drawbar line and a vertical line through the front axle; see Figure 6.12.

(iii) Condition for  Vr (semi-mounted) greater than Vr (trailed) :

        S sinθ  
(a-b)(x+x')

ax
  +  S cosθ [ 

ay' + (z +y')(x+x')
ax

 ]  >  S cosθ 
y'

x

          sinθ 
(a-b)(x+x')

ax
  > cosθ [ 

y'
x

  -  
ay' + (z+y')(x+x')

ax
  ]

tan θ >  
z+y'
a-b

 (6.21)

For the weight transfer for the semi-mounted cultivator to be greater than that for the trailed, the soil force must
pass above the intersection of the drawbar line and vertical line through a point as far forward of the soil force as
the wheel of the semi-mounted cultivator is behind it; see Figure 6.12.

(iv) Summary

A summary of the results of this analysis is given in Table 6.2

The above conditions are likely to be met with implements which have;
(i) a soil force with significant vertical component, such as mouldboard ploughs, compared to those with a

more horizontal force, such as cultivators.

(ii) long implements for which b is large.
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Figure 6.13 Two wheeled tractor dimensions relevant to weight transfer analysis
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6.4.4  Other examples

(a)      Two wheel (walking) tractor    

The wheels of a two wheel ( or so-called 'walking') tractor are usually driven through a V belt and / or chain
drive as shown in  Figure 1.3. The mechanics of its chassis are the same, in principle, as the conventional four-
wheel tractor but here the tractor chassis requires 'support' when pulling a drawbar load. This will usually be
provided by one or more of the following:
(i) a tool, implement or trailer at the rear
(ii) a wheel at the rear
(iii) a counter balance weight at the front
(iv) the operator through the handles

Consider the two-wheel tractor as shown in Figure 6.13 on a slope with an angled pull through the drawbar.
Normally the location of the centre of gravity would be such that with no drawbar pull the tractor would tip
forwards and a counteracting force U acting down on the handles would be required. When a drawbar pull acts
the net moment on the chassis will be clockwise as in Figure 6.13 and so the tractor tends to balance itself.

(i)  With zero drawbar pull:

For the tractor, take moments about O:

Uo  xh +  W sinα (r + yg) = W cosα xr

Uo  =  W cosα  
xr
 xh

   - W sinα  
r + yg
 xh 

 (6.22)

This force must act downward as shown if the centre of gravity of the tractor, counter weight and implement are
forward of the axle.

(ii) With drawbar pull:

For the tractor resolve parallel to the slope:

H  = P cosθ + W sinα

Take moments about C for the wheels:

M   =   H . r

Moments about C for the tractor:

M + W sinα yg + P sinθ x' + U  xh  =  W cos α xr  + P cosθ (r-y')

Substitute for H and M from above:

 P cosθ r  + W sinα r + W sinα yg + P sinθ x' + U xh  =  W cosα xr  + P cosθ (r-y')

U  =  W cosα  
xr
 xh

   - W sinα  
r + yg 

 xh
   - P cosθ  y'

 xh
   - P sinθ  x'

 xh
  (6.23)

     = Uo  - P cosθ  y'
 xh

   - P sinθ  x'
 xh

 (6.24)
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Problem 6.13

For the two-wheel  tractor on slope and with angled drawbar pull, show that the normal wheel weight is:

V = W cosα  
xh+xr
 xh

   - W sinα  
r+yg 

xh
   - P cosθ  y'

 xh
  + P sinθ  

xh − x'

xh
(6.25)

For the convenient operation of such a tractor it would be desirable to arrange that the force U = 0 under
operating conditions. Examination of Equation 6.23 (for simplicity with  α = 0) shows that this will depend on
balancing the moment of the weight and of the drawbar pull .

 W cosα  xr  = P cosθ  y' + P sinθ x'

To achieve this it is common to attach  a large weight at the front of the tractor, the position of which is
adjustable with respect to the axle (equivalent to changing xr) to achieve the desired balance.

  xr  =  P cosθ  y' + P sinθ x'
  W cosα  

Problem 6.14

Show that for the walking tractor with  α = 0 and θ = 0, the condition for U=0 at maximum drawbar pull is
that xr = ψ' y'.
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Figure 6.14: Details of PTO driven trailer for analysis
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 (b)      PTO driven trailer   

The PTO driven trailer as shown in Figure 6.14 (a) can be  pulled up a slope by  a tractor (6.14 (b)) or the wheels
can  also be driven via a drive shaft from the PTO, (6.14(c)).

(i) Pulled

Consider the trailer being pulled up the slope as in Figure 6.14(b).

Resolve along the slope for the trailer:
P = W' sin α

 Moments about D for the trailer:
R . a = W' cos α  b  +  W' sin α (y+yt)

       R = W' cosα  b
a
   -  W' sinα  

y+yt
a

 

Resolve perpendicular to the slope for the trailer:  
      R + T =  W' cosα 

Substitute for R:

  T  =  W' cosα  - W' cosα  b
a
   +  W' sinα  

y+yt
a

 

= W' cosα a-b
a

  +  W' sin α  
y+yt

a
 

(ii) Driven

Consider now the wheels being driven so that the drawbar pull on the tractor is brought to zero as in Figure
6.14(c). Determine the tractive coefficient required  for the trailer wheels.

Moments about C for the trailer:
W' sinα  yt + T . a + M = W' cosα  (a-b)

Moments about C for the trailer wheels:

   M = H . r'

Resolve along the slope:

   H = W' sinα 

Resolve perpendicular to the slope for the trailer;

      R + T = W' cos α 

Substitute for T and M  above
 

W' sinα yt + (W' cos α - R)  a + W' sinα  r  = W' cosα  (a-b)

     R = W' sinα 
r + yt

a
   +  W' cosα  b

a
 

    ψ' =  
H
R

   =  
W' sin α 

 W' sin α  
r + yt

a
 + W' cos α 

b
a

 =  
a tanα 

 (r + yt)  tanα  + b
 (6.26)

The required tractive coefficient thus depends in a complex way on the slope angle α and the position of the
wheels and the centre of gravity.
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Figure 6.15: Trailed weight transfer hitch; (a) and (b) without lift; (c) with lift
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 (c)      Trailed implement weight transfer system

It was shown above that the trailed hitch is least effective in terms of weight transfer.  This deficiency has been
overcome by the development of a weight transfer hitch, in which part of the weight of trailed implements, and /
or downward soil forces, are supported by the tractor rear wheels (Persson, 1967; Hockey,1961-62).

The principle of one common system is illustrated in Figure 6.15.  The rigid link XYZ is attached to the three-
point linkage DY and EY;  Z is connected to the implement drawbar with a flexible link ZG.  In operation, the
three-point linkage applies a lifting force F to the implement; this is set by the operator and is kept constant by a
hydraulic valve even when the tractor pitches with respect to the implement. This support (but not lifting
movement) of the implement transfers some implement weight, as well as some of the tractor front wheel
weight, onto the rear wheels.

Assume the weight transfer hitch is attached to an unbalanced trailer as shown in Figure 6.15.

It is required to determine the weight on the rear wheels of the tractor when there is a force F in the chain
between the hitch and the drawbar of the trailer. Assume a drawbar pull of P.

(i) For the tractor and trailer with no lift and no drawbar pull; Figure 6.15(a) and (b).

Moments about A for the trailer:

T  a = W'  (a-b)  where T is the vertical force on the tractor drawbar

     T = W'  
a-b
a

  

 
Moments about O for the tractor:

Vf  x  +  T  x'  =  W  xr   

Vf =  W 
xr
x    -  T 

x'
x

    =  Wf  -  T 
x'
x

 (6.27)

Substituting for T from above

 Vf = Wf  - W' 
(a-b) x'

a   x
 (6.28)

Moments about Q for the tractor

 Vr  x = W  xf + T (x + x')

 Vr = Wr + T 
x + x'

x
  

Substituting for T from above:

Vr  = Wr + W' 
(a-b)(x+x')

a  x
   = Wr + W'  

a-b
a

    + W' 
(a-b) x'

a   x
 (6.29)

The significance of the terms in Equations 6.28 and 6.29 can be identified as follows:

 W'  
a-b
a

   = T - weight from the trailer drawbar

W'  
a-b
a

  
x'
x

    - weight from tractor front wheels due to T
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(ii) For the tractor and trailer with pull P and lift force F, Figure 6.15(c)

Moments about A for the trailer

 W'  (a-b) + P y'  + T  a  = F (a-c)

where T is vertical force on the tractor drawbar and is now assumed to act downwards on the trailer drawbar.

     T = F 
a-c
a

   - W'  
a-b
a

   -  P 
y'
a

  

Moments about Q for the tractor

      Vr  x  + T (x + x') = W  xf +  P  y' + F (x+x'+c)

   Vr = Wr + P 
y'
x

  + F 
x+x'+c

x
   - T 

x+x'
x

   

Substitute for T from above:

   Vr = Wr + P 
y'
x

  + F 
x+x'+c

x
   - F 

(a-c)(x+x')
a . x    + W'  

(a-b)(x+x')
a . x    + P 

y' (x+x')
 a . x

 

   Vr  =  Wr + W' 
(a-b)(x+x')

a . x
  + P 

y'(a+x+x')
a . x

  + F 
c(a+x+x' )

a . x
 (6.30)

Problem 6.15

Show that the weight on the front wheels of the tractor with weight transfer hitch is:

Vf = Wf - W' 
(a-b)x'
a . x

   - P 
(x'+a)y'
a . x 

   - F 
c(a + x')

 a . x
                       (6.31)

The terms in these equations showing  the weight transferred to the rear tractor wheels can be identified as
follows:

 Wr , Wf , W' - static weight on  the respective wheels

W'  
a-b
a

   = T -  weight on the trailer drawbar

W'  
a-b
a

  
x'
x

 -  weight transferred from tractor front wheels due to T

P 
y'
a

 -  weight  from trailer wheels  due to P

P 
y'
x

   - weight from tractor front wheels due to P

P 
y'
a

  
x'
x

 - weight from tractor front wheels due to transfer from trailer wheels

F  
c
a
 -  weight from trailer wheels due to F

F 
c
x 

 - weight from tractor front wheels due to F

F 
c
a
  
x'
x

 - weight from tractor front wheels due to transfer from trailer wheels
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Figure 6.16: Operating parameters for tractor on slope with impending instability
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6.5  IMPENDING  INSTABILITY

The following analysis, which is similar to that given by Sack (1956), illustrates the factors which limit the
operation and performance of the tractor as a result of impending instability in the vertical longitudinal plane.

Consider the four-wheel tractor on the slope with drawbar pull parallel to the ground surface; θ =  0,  as shown
in Figure 6.16.

For impending instability, ie, Vf  =  0

Moments about C for the tractor:

M  +  W sinα yg  =   W cosα xr  +  P y

Resolve perpendicular to the slope:

 Vr  =   W cosα

Resolve parallel to the slope:

   H =  P  +  W sinα

Take moments above C for wheel:

   M =   H  r

Write
   H = ψ' Vr  where ψ' is the gross  tractive coefficient (ie, based on H )

Substitute for H, P and M above:

    M =  ψ W cosα  r

Substitute for  H,  P and M above:

   ψ W cosα  r   =  W cosα xr  + ψ W cosα  y -  W sinα y  -  W sinα yg

     sinα (y + yg) =  cosα (xr + ψ (y -  r))

   tanα (y + yg) =  xr - ψ(r - y)

   tanα (r - y' + yg) =  xr - ψ(r - y)

 ψ ' =  
xr - tanα (r - y' + yg)

 y'
 

ψ' =  tanα  +   
xr - tanα (r + yg)

y'
 (6.32)

Dividing  through by (r+ yg) gives

ψ' =  tanα  +  

 
xr 

r + yg
   -  tanα

 
y'

r + yg
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Write     
xr

r + yg
 =  tanα (static)    =    tanαs  (6.33)

αs  is the angle of slope that would cause the tractor to tip as a rigid body  about the ground contact points under

static, ie, no drawbar pull conditions; αs  is usually a large angle, about 40o for most tractors.

Write  
y'

r + yg
 =   

drawbar height
 centre of gravity height

   = h (6.34)

A typical value for h  is  0.6.

ψ' =  tanα +   
tan αs - tanα

h
 (6.35)

Here ψ is the tractive coefficient that must be achieved to bring the tractor to impending instability when it is
operating on  a slope α.

(i)  If ψ' required to travel up the slope is less than  ψ' given by Equation 6.35, then the tractor will not reach
impending instability.

(ii) If ψ' required to travel up the slope is greater than  ψ' given by Equation 6.35, then the tractor will reach
impending instability.

(iii) If ψ' required to travel up the slope is greater than  the maximum ψ'  possible, then the tractor wheels will
slip.

Figure 6.17 shows a plot of ψ versus tan α for various values of:

(i)  tanαs = 0.6 (high centre of gravity) and 0.8(typical centre of gravity)

(ii)  h = 0.6 (typical drawbar height), 0.7 and 0.8 ( a high and dangerous hitch point).

The region where tanα  > ψ' is not feasible; the tractor will slide off the slope.

The example shows a tractor on the slope where tan α = 0.3.

(i)  For ψ'max = 0.8 (good traction conditions) instability can occur for h  = 0.7 or 0.8 because ψ'max is

greater than  ψ'  =  0.72 or  0.67  required.

(ii) For ψ'max  = 0.6 (moderate traction conditions) instability cannot occur even for h = 0.8 because ψ'max is

less than  ψ  =  0.67 required; the wheels will slip.

The general conclusion to be drawn is that impending instability:

(i) is unlikely to occur with normal drawbar heights, moderate slopes and common traction conditions;
usually the wheels slip

(ii) may occur (often with fatal consequences) where traction conditions are good or have been enhanced by
the use of strakes (traction aids), where slopes are steep and particularly where the drawbar or the loading
point has been raised.

It should also be noted that, while the above simple,     static     analysis suggests the tractor is relatively safe if used
correctly, in practice dynamic effects may influence its behaviour and create dangerous situations. For example,
acceleration of the tractor forwards introduces an inertia force through the centre of gravity that has a moment
about the rear axle which tends to tip the tractor rearwards. The opposite will be true when the tractor is being
braked; here weight is removed from the rear wheels which may adversely affect their braking capacity.
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Problem 6.16

What drawbar height will just bring the Farmland tractor to impending instability at the maximum  tractive
force on a horizontal soil surface? The following additional data apply:

Total area of soil - wheel contact patch A = 0.076 sq. m; 
Cohesion of soil c = 2.0 kPa

Angle of internal friction of soil φ = 32o

From Figure 6.15:
For impending instability:       Vf = 0

Resolving horizontally:     D = H  =  A  c  + W  tan φ

Moments about O:

                             H  y'      =  W xr

           H      =  W  
xr
y'

 

        W  
xr
y'

      =  A c  + W tan φ

           y'     =  
W xr 

A c + W tan φ 

This confirms the conclusion given above that, as the soil becomes stronger, (c and φ  increase) the height of
the drawbar pull that is required to cause impending instability     decreases    , ie, instability is more likely under
good traction conditions than under poor when the wheels will slip rather than  the tractor to tip.

For the Farmland tractor:

y'  =   
W xr

(A c  + W tan φ)  =   2850 x 9.81 x 0.54
.076 x 2 x 2000  + 2850 x 9.81 x  tan 32

  = 0.85 m 

There are places on many tractors at this height to which a load could be attached; it is clearly very dangerous!
Loads should always be attached to the standard drawbar.

Problem 6.17

Repeat Problem 6.16 for the tractor: (i) travelling up a slope
  (ii) travelling down a slope



6.40

     The Mechanics of Tractor - Implement Performance: Theory and Worked Examples - R.H. Macmillan        

6.6  REFERENCES

Barger, E.L., Carleton, W.M., McKibben, E.G., and Bainer, R. (1952) Tractors and Their Power Units,  1st
Edition, (Wiley).

Dwyer, M.J. (1974):   Implement coupling and control.  The Agricultural Engineer,  29(2):  61-67.

Gilfillan (1970):   Tractor behaviour during motion uphill;  II  Factors affecting behaviour.  Journal of
Agricultural Engineering Research  15(3), 221.

Hockey, W.S. (1961-62):   Tractor mounted implements and adaptations. Proceedings, Institution of
Mechanical  Engineers, Automotive Division. No. 4.  (Also contribution by P.A. Cowell).

Inns, F.M. (1985) Some design and operational aspects of 3-link implement attachment systems. Agricultural
Engineer , Winter, 136-144.

Liljedahl, J.B., Carleton, W.M., Turnquist, P.K. and Smith, D.W. (1979) Tractors and Their Power Units,  3rd
Edition, (Wiley).

Persson, S. P.E. and Johansson,  S. (1967):  A weight transfer hitch for trailed implements.Transactions,
American Society of Agricultural Engineers,  10(6), 847 - 849.

Sack, H. W. (1956):  Longitudinal stability of tractors. Agricultural  Engineering, 37 (5), 328 - 333.



The Mechanics of

Tractor - Implement Performance
Theory and Worked Examples

R.H. Macmillan

 CHAPTER  7 and  8

TRACTOR - IMPLEMENT MATCHING AND OPERATION

GENERAL PROBLEMS

Printed from: http://www.eprints.unimelb.edu.au

CONTENTS

7.1  INTRODUCTION 7.1

7.2  IMPLEMENT PERFORMANCE 7.1

7.2.1 Implement draught 7.1

7.2.2 Implement draught - speed characteristic 7.3

7.2.3 Implement power 7.3

7.2.4 PTO driven and towed implements 7.3

7.3 TRACTOR - IMPLEMENT PERFORMANCE 7.5

7.3.1  Operating conditions 7.5

7.3.2  Optimum performance criteria 7.5
(a) Maximum drawbar pull 7.5
(b) Minimum drawbar specific fuel consumption 7.5
(c) Maximum drawbar power 7.6
(d) Maximum tractive efficiency 7.6

7.3.3 Matching wheels and engine 7.9

7.4 MATCHING TRACTOR AND IMPLEMENT 7.10

7.4.1 Variables available 7.10
(a) Purchase 7.10
(b) Indirect 7.10
(c) Combined 7.10
(d) Operation 7.10

7.4.2 Optimising performance 7.10
(a) Maximum engine power 7.11
(b) Traction efficiency 7.11
(c) Maximum tractive efficiency 7.11

7.4.3 Setting up tractor and implement 7.12



7.5 OPERATING THE TRACTOR 7.14

7.6 REFERENCES 7.15

GENERAL PROBLEMS     8.1

Note: The Title Page, Preface, Table of Contents, Index, Appendices and details of the Farmland tractor can
be  found with Chapter 1.



The Mechanics of Tractor - Implement Performance: Theory and Worked Examples - R.H. Macmillan

7.1

CHAPTER  7

TRACTOR  -  IMPLEMENT  MATCHING AND OPERATION

7.1   INTRODUCTION

Having considered the performance of the tractor on a firm surface (Chapter 3), on soft soil (Chapters 4 and 5) and the
effect of the implement on the weight carried by the tractor wheels (Chapter 6), we finally need to consider the steps
involved in matching, in performance terms, an implement and tractor. Here matching means choosing the size and / or
setting up the tractor and implement so that they may perform their functions in the most efficient way. We will do this
by considering what measures would be most appropriate to represent their performance efficiency and how these
might be maximised.

Many other factors of an agronomic, economic and organisational nature may also need to be considered, particularly
when choosing a type of implement; these are beyond the scope of this book. Readers are referred to existing text books
for consideration of the functional performance of the various types of implement.

There may also be many gaps in the information required for matching an implement and tractor. Notwithstanding this
lack, setting out the steps in a formal way may help to clarify the logic of making the choices and to determine what
further data are required in any particular  circumstances.

7.2  IMPLEMENT PERFORMANCE

7.2.1 Implement Draught

The study of the in-field performance of a tractor is related to the performance of the implement to which it is attached;
the latter, which is a complex subject in its own right, is also beyond the scope of this book. However we can consider
the input to implements in a general way (in terms of force, speed, power etc) and so consider the matching problem, at
least in principle.

For the purposes of matching an implement that is being pulled, the important parameter to consider is the horizontal
force to move the implement commonly known as the 'draught' force (from the word to 'draw' or to 'pull'). This force is
equal and opposite to the forces that arise from the process that the implement is performing and will of course vary
with the nature of that process (represented broadly by the implement type), the size of the implement and the travel
speed.

If the total force of the implement on the tractor is not horizontal, the vertical component will alter the weight on the
wheels, as discussed in Chapter 6, and so affect the traction process. However it will not significantly alter the draught
and will only have a second order effect on the matching process.

The draught of an implement is expressed as a force, usually in kN. However draught may also be expressed in terms of
parameters that take into account the size of the implement or the  magnitude or intensity of the process or of the work
that is being done.

These parameters, which are usually termed 'unit draught' or 'specific draught', include:
(i) draught per unit effective width of machine, kN/m
(ii) draught per unit of effective cross-sectional area disturbed (usually for tillage implements), kN/sq m (kPa)
(iii) draught per unit tool (usually for tillage implements), kN/ tool.

These measures are used as a basis for comparing implements of different size and type (ASAE 1998).
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7.2.2 Implement draught - speed characteristic

Because the tractor is a variable speed machine, the fundamental and important characteristic of any implement that
will be attached to it, (working in given conditions (eg, crop / soil) and with a given adjustment (eg, depth)), is the
relationship between its draught force and travel speed.

Some implements, such as those used for tillage, have a significant draught component at 'zero' speed; this represents
the force to rupture the soil under 'quasi-static' (ie, effectively zero speed) conditions. At higher speeds the force will
generally increase due to the fact that higher speeds involve greater acceleration of the soil and that soils are slightly
stronger under dynamic conditions. Hence implements such as mouldboard ploughs that lift and move soil a greater
distance and have large draught due to friction and adhesion show a greater increase in draught with speed than do
implements, such as tined cultivators, which just lift or move the soil a short distance.

Heavy load carrying implements such as trailers will, due to their rolling resistance, also have a large drawbar pull at
zero speed; this may increase slightly as speed increases to moderate levels. For other relatively light implements
involved in some form of crop processing (mowing, harvesting, spreading) with power transmitted through the PTO,
the draught will be small at zero speed and substantially constant. However the PTO power may increase significantly
with speed.

These characteristics of agricultural implements contrast with those of barges being pulled through water where, ideally
at least, the draught  will be zero at zero speed and vary as the square of the speed (for low speeds).

Figure 7.1(a) shows the hypothetical draught - speed characteristics for various implements also for an implement with
a constant draught.

7.2.3 Implement power

While draught is the fundamental measure of input to the implement (as drawbar pull is for the output of the tractor), so
draught power is a useful measure of input to the implement (as drawbar power is for the output of the tractor).

Since drawbar power is the product of draught force and travel speed, any increase in speed of an implement will cause
an increase in the drawbar power due to:

(i) the direct effect of the travel speed increase
(ii) the indirect effect due to the associated increase in draught (if any) with increase in travel speed

Thus if an implement has a  draught - speed characteristic of the form,

D =  Do + d' . V1.2 (7.1)

Draught power Q  =  D . V

    =  Do . V  + d' . V2.2 (7.2)

The corresponding power - speed characteristics for the implements are shown in Figure 7.1(b). The power - speed
characteristic for an implement with a constant draught (for d' = 0 in Equation 7.1) is also shown.

7.2.4 PTO driven and towed implements

Many agricultural machines used for 'processing' crop or soil are driven through the PTO as well as being pulled by the
drawbar. The effect on the tractor engine will be the sum of the two separate effects.

The increase in engine power required from the tractor with an increase in travel speed (for a constant PTO speed
which is typical for a processing type operation) will be the sum of the:

(i)  direct effect on drawbar power of the travel speed increase (as in (i) above) - (first term in Equation 7.2)
(ii) indirect effect of drawbar power due to the associated increase in draught with travel speed as in (ii) above -

(second term in Equation 7.2); this is likely to be small for processing type implements
(iii) increase in the PTO power due to the increase in rate of crop / soil processing that arises from the increased

travel speed.
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7.3 TRACTOR - IMPLEMENT PERFORMANCE

7.3.1  Operating conditions

When an implement is hitched to a tractor:

(i) the draught of the implement determines the drawbar pull required to be developed by the tractor and is equal but
opposite to it

(ii) the travel speed of the tractor determines the travel speed of the implement  and is equal to it

Consider a tractor with a travel speed - drawbar pull characteristic (in a particular gear) attached to and pulling an
implement with a particular draught - travel speed characteristic.

Because (i) and (ii) above are true, the operating point of the combination will be where these two curves intersect.

Similarly consider a small tractor with three gears as shown in Figure 7.2  to which we can attach two alternative
implements (with a particular width), one with a constant draught - speed characteristic and one where the draught is a
function of travel speed, V. These may be expressed either on an absolute (kN) or on a unit basis (kN / m width).

Draught,  D = 2.5

Draught,  D = 2.5 + 0.6 V2

We can identify the operating conditions for the tractor in the various gears as the points where the draught - travel
speed graph for the implement and travel speed - drawbar pull graphs for the tractor intersect as shown in Figure 7.2 at
points similar to X. The graph shows the performance for maximum governor setting but it should be remembered that
for each gear there is a range of engine governor settings giving a range of  lower travel speeds.

We can also imagine the operating points for an implement of different widths having a proportional increase or
decrease in draught.

Hence in matching an implement and tractor, there are a large number of possible operating conditions as represented
by all the possible intersection points within the overall performance envelope. The question therefore arises as to
which point or group of points would represent suitable operating conditions.  As an example we might consider a wide
implement with the tractor travelling slowly or a narrow implement with the tractor travelling quickly. Within
reasonable limits either of these possibilities, or any others between them, would be suitable. However if  we wish to
consider the efficiency or other aspects of the processes we need to consider the criteria by which we might make a
choice between these various alternatives.

7.3.2  Optimum performance criteria

At its simplest the matching process involves deciding what draught to apply on the tractor, ie, what drawbar pull it will
be required to develop.

We could consider choosing an implement with a draught that would cause the tractor to reach:

(a) Maximum drawbar pull

This (or near it) may be an appropriate condition if we were, for example, attempting to pull a tree over where we could
accept a very low travel speed and a very large wheel slip for a few seconds. It would not however be suitable for the
long-term continuous operation of a tractor / implement system.

(b) Minimum drawbar specific fuel consumption

This would give the best fuel economy. It could be a suitable basis for selection because (at least on firm surfaces) it
corresponds to a drawbar power slightly less than the maximum.
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(c) Maximum drawbar power

This would also be a suitable basis for selection because maximum power (or a slightly lower value that would allow
for natural variation in the draught) would correspond to operation with good fuel economy.

(d) Maximum tractive efficiency

This would also be a suitable basis but with this criteria, drawbar power may be somewhat less than the maximum in
(c) above; see for example Figure 5.7 and 5.8.

The most common criterion for optimum matching is that of maximum drawbar power which gives a good fuel
economy (criterion (c)) and also a good tractive efficiency (criterion (d)).

Problem 7.1

Figure 7.3 shows:

(i) the travel speed - drawbar pull graph tractor operating in a certain gear on a soil surface.  
(ii) the unit draught (per metre of width) - travel speed graph for a plough cultivating the same soil.

Determine a suitable width for the implement, 1, 2 or 3 m, etc.

Answer:

(a)  Tractor

A suitable width implement will be such that the tractor is working at maximum drawbar power. For points on the
travel speed - drawbar pull graph, calculate the drawbar power and plot the resulting points against drawbar pull.

For example, with drawbar pull P = 5kN, travel speed V = 1.95 m/s

Q  =  P . V  =   5  x 1.95  =  9.75 kW

From this graph it is seen that the maximum drawbar power of 24.3 kW will be generated when the drawbar pull is
16.5 kN.

(b)  Implement

The draught for the implement will be the width times the draught per metre of width; use this to plot the draught for
various widths of implements ( 2, 3 and 4 m) as shown.

 (c)  Implement - tractor combination

The operating point for the implement - tractor combination, for maximum drawbar power will be the intersection point
of the draught - speed graph (for the particular width of implement) and the drawbar pull graph for the tractor. The
point on the graph for the width that intersects at or below 16.5 kN is 3 metres. The implement width is 3m, the
drawbar pull is 15.7 kN and the drawbar power is 24 kW.
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7.3.3  Matching wheels and engine

Before considering the overall problem of matching implement and tractor it is helpful to consider the more limited
design problem of choosing the maximum weight on the driving wheels to suit a given travel speed and engine power.

Neglecting the rolling resistance and the transmission efficiency, the drawbar power for a tractor (Equations 4.22) may
be written:

       Qe  ηt =  Qd  

=  V  (Ac + W tanφ)  X

=  V  W (
c

σ
 + tanφ)  X

= V  W  ψ (7.3)

This suggests that there should be an inverse relationship between the weight on the driving wheels and travel speed if
the maximum tractive power is to be maintained.

Dwyer (1984) gives typical values for maximum tractive efficiency, ηt = 0.7 and corresponding tractive coefficient,

ψ = 0.4  for a range of tyres and soil conditions.

Hence
        Qe  0.7  =  V   W  0.4

 
W

Qe
 V =  1.75

For W in kg, V in km/hr and Qe in kW we have

 
W

Qe
 V =   

1.75   3.6   1000

9.8
  =  643 (7.4)

As plotted in Figure 7.4, this shows the inverse relationship between the weight on the driving wheels per kW of engine
power and travel speed for maximum performance. This is an important conceptual relationship that illustrates the
alternatives of light, 'high' speed tractor / implement systems compared to heavy, slow ones.

For a multi-purpose tractor (with a given engine power) one would choose the lowest (or highest) sensible working
speed and calculate the appropriate weight. At higher (lower) speeds the tractor would be heavier (lighter) than
required; some weight could be removed (added) if desired.
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7.4 MATCHING TRACTOR AND IMPLEMENT

7.4.1  Variables available

The selection of a tractor / implement system involves a series of choices about the relevant factors. These may be
listed as follows:

Purchase Indirect Combined Operation

Maximum engine
power

Implement type
Implement depth
Soil condition

Implement width
Weight on wheels

Engine speed
Gear ratio

Table 7.1 Parameters in selection, matching and operation of a tractor - implement system

(a) 'Purchase'

This implies the factor is chosen at purchase. Maximum engine power is an upper bound value, the choice of which is a
very important one since it determines the maximum capacity of all the equipment that will be used with the tractor.
However the issues involved in the choice of an optimum value for it, such as the relative costs of capital and labour
and the timeliness penalties or costs of the various operations for which it will be used, are beyond the scope of this
book. The following discussion has therefore been limited to the matching of an implement to a tractor that has already
been chosen.

(b) Indirect

This implies that these parameters are chosen, not in terms of performance but in consideration of other factors such as
the functional objective (implement type), agronomic significance (tillage depth) and weather (soil or crop condition).
Again these are also beyond the scope of this book and will not be considered further.

(c) Combined

This implies that these parameters are chosen both at purchase and before operation, ie, they may be altered, in
principle at least, but in practice may not be.

(d) Operation

This implies that they are primarily chosen during operation, ie, they can be varied by the operator to suit the
conditions that partly arise as a result of earlier choices and partly due to particular local physical circumstances such
as land form, soil type, crop condition, etc.

7.4..2  Optimising performance

On the basis of the above decisions we are left with four factors that will determine the operating point on the drawbar
pull - travel speed and travel speed - draught characteristics;

(i) engine speed, gear ratio and weight on wheels related to the tractor.
(ii) implement width related to the implement.

Following the discussion in Section 7.3.2 above, let us assume that the desirable matching criteria is to achieve
maximum drawbar power. A somewhat lesser value may be chosen as discussed below; the logic of the argument
would be the same.
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Equation 2.14 gives

Maximum drawbar power  =    Maximum x   Maximum transmission   x Maximum (7.5)
engine power efficiency        tractive efficiency

From this it will be clear that maximum drawbar power will be achieved if the engine can be made to work at its
maximum power and the transmission and the tractor wheels can both be made to work at their maximum efficiencies.

Considering each of these terms in turn:

(a) Maximum engine power

As discussed in Section 3.2.2, maximum engine power  will be achieved at the maximum governor setting and with a
load (torque) that brings the engine to the condition where the fuel pump is just delivering maximum fuel per stroke.
As the load on the engine is increased from zero, the engine speed decreases slightly and the governor increases the
fuel flow rate to the maximum; this is the condition of maximum engine power. Any further increase in torque will
(because of the constant fuel flow) cause a significant decrease in engine speed and a corresponding reduction in
engine power.

The condition of maximum engine power will not be directly  evident to the operator. The only evidence will be the
single speed value corresponding to maximum engine power.

(i) A higher speed than this will indicate that the engine, while running in the governed range is not delivering
maximum power and is not fully loaded.

(ii) A lower speed will indicate that the engine is running in the full fuel range, is again not delivering maximum
power and is therefore ‘over’ loaded.

If, for some reason, it is thought to be undesirable to run the engine at full power  (eg, to ensure greater engine life), a
lesser value of say 90% of maximum power and / or a governor setting less than the maximum setting may be chosen.
Such a value would coincide with a general area of good fuel economy and would allow a margin for the load to
increase temporarily without the engine running into the full-fuel range.

Strategies to increase (or decrease) the torque on the engine and so bring it to maximum power involves:
(i) using a higher (lower) gear, ie, decreasing ( increasing)  q in Equation 2.2
(ii) using a wider (narrower) implement, ie, increasing (decreasing) P in Equation 2.2

 (b) Transmission efficiency

As noted in Section 2.4.1(b) above, the transmission efficiency is high and sensibly constant; the operator cannot
increase it, so it does not enter into the matching process.

(c) Maximum tractive efficiency

Maximum tractive efficiency will be achieved, by the appropriate choice of implement width (in effect, drawbar pull or
strictly draught) and the size and weight on the wheels. However again the condition of maximum tractive efficiency
will not be directly evident to the operator, hence it is necessary to use a surrogate variable, ie, one, the value of which,
at maximum tractive efficiency, is known; wheel-slip is the variable that may be used.

(i) too high a slip indicates that the tractor has too large a draught load or has insufficient weight on the driving
wheels

(ii) too low a slip indicates that the tractor has too small a draught load or has excess weight on the driving wheels.

Thus the evidence of the wheels achieving maximum tractive efficiency will be optimum slip. However this varies with
the soil condition. Typical values are shown in Table 7.3, adapted from Dwyer et al (1976).

Thus achieving maximum tractive efficiency is based on strategies to decrease (increase) the slip which involves:

(i)  increasing (decreasing) the weight on the wheels
(ii) using a narrower (wider) implement.
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Description
of surface

Cone index
kPa

Percentage of maximum weight on wheel

60 - 70 70 - 80 80 - 90 90 - 100
Dry grass
Dry stubble
Wet stubble
Dry loose soil
Wet loose soil

1500
1000
500
400
200

10
10
11
12
15

10
10
12
13
16

10
11
12
13
17

10
11
12
13
18

Table 7.2  Slip at maximum traction efficiency (Adapted from Dwyer et al, 1976;
reproduced with permission of Silsoe Research Institute)

7.4.3 Setting up implement and tractor

It is clear from the above that the optimisation of the performance of a tractor - implement system involves a complex
set of choices related to both the engine / transmission and the wheels.

Grevis-James (1978) has developed a grid shown in Table 7.3 that summarizes the changes that may be made to match
the tractor and implement and set them up to achieve maximum drawbar power (or some proportion of it).

In this table two alternative strategies are offered.
(i)  maintain the output work rate shown in normal font in the upper part of each cell
(ii) increase the output work rate shown in italic font in the lower part of each cell.

MAINTAIN
OUTPUT

INCREASE
OUTPUT

WHEEL
SLIP ->

LOWER  THAN
OPTIMUM OPTIMUM

HIGHER   THAN
OPTIMUM

ENGINE    |
  SPEED    V

WHEELS  PART
LOADED

WHEELS  FULLY
LOADED

WHEELS  'OVER'
LOADED

HIGHER
THAN

RATED

ENGINE
PART
LOADED

Reduce  weight, use
higher gear  & lower
governor  setting
Use  higher  gear &
increase  width

Use  higher  gear  &
lower governor
setting

Use  higher  gear

Reduce  width & use
higher  gear

Add  weight  & use
higher  gear

RATED
ENGINE
FULLY
LOADED

Reduce  weight

Increase  width  &
use  lower  gear

OPTIMUM

MATCHING

Reduce  width & use
higher  gear

Add weight

LOWER
THAN

RATED

ENGINE
'OVER'
LOADED

Use  lower  gear  &
increase  width

Use  lower  gear  &
increase  width

Use  lower  gear

Use  lower  gear

Reduce  width

Add  weight  & use
lower  gear

Notes: 1. Use of a weight transfer hitch or mounted implement has the same effect as adding weight.
2. “Wheels 'over' loaded" refers to the drawbar load not the weight being carried.
3. "Engine ‘over’ loaded" refers to engine running in full - fuel range ( Section 3.2.2, (a) & (b)).
4.. 'Engine speed' refers to rated speed at maximum power, not governor setting.

Table 7.3: Tractor - implement  matching chart (Modified from Grevis-James, 1978;
reproduced with permission of Institution of Engineers, Australia)
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Figure 7.5: (a) Travel speed - drawbar pull and draught characteristic for tractor and implement
                (b) Drawbar and draught power - drawbar pull and draught characteristic for tractor and implement
                (c) Specific fuel consumption  - drawbar pull and draught characteristic for tractor and implement



The Mechanics of Tractor - Implement Performance: Theory and Worked Examples - R.H. Macmillan

7.14

7.5  OPERATING THE TRACTOR

The above sets out the principles involved in achieving optimum matching of an implement and tractor. In practice the
tractor may be used for many different types of work under differing draught and soil conditions.  Hence it is unlikely
that the tractor / implement will be set up in a way that is optimum for all the types of work for which it may be used.

Notwithstanding this compromise, we need to consider how to adjust the tractor during operation to achieve optimum
fuel economy. In doing this the only factors that are available for choice by the operator are the gear ratio and engine
speed, as determined by governor setting.

Consider the Farmland tractor and an associated one way plough. The model described in Chapter 5 was used to plot
the tractor performance for maximum governor setting for the 6 working gears as shown in Figure 7.5(a).

Figure 7.5 (a) also shows the travel speed versus draught characteristics for three implement widths of 1, 2 and 3 metres
(Palmer and Kruger (1982)). This is given by:

D  = w . d (20 + 0.15 V2) (7.6)

Figure 7.5 (b) shows the drawbar power versus drawbar pull for the 6 gears and draught power versus draught (force)
also for same three implement widths; depth = 0.2 m.

The latter is given by:

Q = D . V  =  w . d (20 + 0.15 V2) V (7.7)

Figure 7.5 (c) shows the drawbar specific fuel consumption versus drawbar pull for the 6 gears. The specific fuel
consumption graphs for the three implement widths were plotted by projecting down from the appropriate intersection
points on the travel speed (or power curves) marked  'x'.

This set of graphs illustrates various aspects of the matching / operation.

(i)  For a given tractor, various implement widths can be used. For heavy work such as ploughing it would be usual
to operate in a low gear with an implement that would bring the tractor to near maximum power. This is
illustrated by the 3m implement operated by the tractor in 5th gear as shown in Figure 7.5(b).

(ii) A narrower implement can be operated but, in order to get good fuel economy, it must be worked in the higher
gears. This is illustrated by the 2m implement operating in 6th gear as shown in Figure 7.5 (a) and (b).

(iii) Changing up to a higher gear increases the drawbar power and reduces the drawbar specific fuel consumption
along the lines shown in Figure 7.5 (c). Such a change increases the (torque) load on and power from the engine
and allows the engine to run in more economical conditions as discussed in Sections 3.2.3, 7.4.2 and 7.4.3.

Changing to a lower gear always makes the fuel economy worse. Clearly the more gears there are available, the
smaller will be that change.

(iv) Changing up a gear increases the speed which may cause control or vibration problems. It may therefore be
necessary to reduce the speed by reducing the governor setting; this will mean that the implement characteristic
will intersect the characteristic for the chosen gear somewhat below the lines shown at the maximum governor
setting in Figure 7.5 (a) and (b).

(v) If a tractor could be made to work along the maximum power envelope it is clear that the tractor will work in a
region of excellent fuel economy. This of course corresponds to the region of high tractive efficiency as shown
in Figure 5.9 (c). The  limits to this procedure occur:

* at high speeds where rolling resistance power loss is high and ride comfort may be unacceptable
* at high pulls where wheelslip is high.

In summary, when using the tractor for drawbar work, the fuel economy can be improved by changing up a gear and
reducing the governor setting, hence the engine speed, to avoid excessive travel speed. If it is necessary to change down
a gear, the fuel economy will be worse; increasing the engine speed by increasing the governor setting will improve it
to some extent.
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If the PTO is being used and a fixed speed for it is required, it would only be possible to change gears; the fuel
economy will change as above.

Notwithstanding all of these choices and adjustments, it is important to operate the tractor under safe conditions where
control can be maintained and at speeds with which the work being done is satisfactory.
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CHAPTER 8

GENERAL  PROBLEMS
Problem 8.1

A tractor has an engine having a maximum power of 62kW at 1950 rpm at maximum governor setting.

When tested in the field, the following data were obtained:
Drawbar pull = 26.2 kN
Distance traveled for 10 revolutions of driving wheels - with no drawbar pull = 55.8 m

 - with drawbar pull = 46.2 m
Engine speed = 1950 rpm
Fuel consumed = 126 g
Time taken = 25.8 s
Transmission efficiency = 92%

Determine: Drawbar power, wheel slip, traction efficiency, fuel consumption and specific fuel consumption.

Answers: 46.9 kW;17.2%; 82%; 21L/hr; 374 g/kWhr

Problem 8.2

The following data applies to a tractor operating on a level  frictional soil:
Diameter of driving wheels =  D
Overall gear ratio =  q
Maximum engine torque =  T
Angle of internal friction =  φ

Show that the minimum weight on the wheels to bring the engine to maximum torque is given by:

W  = 
2 q T

D tanφ

Problem 8.3

Consider a rear wheel drive tractor operating on a level surface. If the coefficient of traction based on the weight on
the rear wheels is ψ and the coefficient of rolling resistance for the front wheels in ρ show the drawbar pull that can
be achieved is:

P = 
ψWr − ρW f

1 −
y'

x
(y + r)

Problem 8.4

Consider a tractor with rear wheel braking for which the maximum braking coefficient, λ is

λ =     
maximum horizontal braking force

vertical rear wheel reaction

By assuming that the dynamic inertia force ‘ma’ in braking is a static force acting through the centre of gravity of
the tractor, show that the maximum retardation, a is given by:

a  = g 
λ  x f

x +  λ (r +  y3)
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Problem 8.5

A small, rear wheel drive tractor was tested in three gears with normal weight on a bitumen road and on a firm soil
surface also with extra weight also the road. The results are shown in Table 8.1.

Drawbar
Soil, standard weight Road, standard weight

pull, kN
Travel speed, m/s Slip % Travel speed, m/s Slip %

Gear -> 3 2 1 % 3 2 1 %
0.0 1.51 1.05 0.42 0.0 1.63 1.07 0.45 0.0
1.0 1.32 0.95 0.40 3.5 1.54 1.03 0.42 1.7
2.0 1.13 0.83 0.36 9.9 1.44 0.99 0.40 3.6
3.0 0.90 0.68 0.29 18.4 1.35 0.95 0.38 5.9
4.0 0.57 0.44 0.12 - 1.26 0.90 0.35 9.0
5.0 - - - - 1.09 0.83 0.29 14.1
6.0 - - - - 0.60 0.48 - 25.0

Drawbar Road, extra weight Fuel cons, L/hr: gear 3

pull, kN
Travel speed, m/s Slip Soil Road Road

Gear -> 3 2 1 % Std wt. Std. wt Extra wt.
0.0 1.64 1.08 - 0.0 1.80 1.66 1.50
1.0 1.56 1.04 - 1.6 2.20 2.10 1.95
2.0 1.49 0.99 - 3.0 2.50 2.50 2.35
3.0 1.42 0.96 - 4.6 2.65 2.87 2.74
4.0 1.35 0.92 - 6.6 - 3.10 3.10
5.0 1.28 0.88 - 9.1 - - 3.35
6.0 1.19 0.82 - 12.8
7.0 0.95 0.70 - 19.8

Table 8.1

(i) Plot:
(a)  Travel speed and wheelslip versus drawbar pull
(b) Drawbar power versus drawbar pull
(c) Fuel consumption and specific fuel consumption versus drawbar power for gear 3
(d) Drawbar power versus wheelslip

(ii) Discuss the effect of gear, weight and surface on the performance of the tractor.

Problem 8.6

Some tractors are available with a three-point linkage on the front of the tractor. Compare such an arrangement with
a rear-mounted linkage with respect to weight transfer and implement control.

 Problem 8.7

Imagine that you have been requested to advise on the preliminary design of a harvesting machine to be powered by
the Farmland tractor. The machine will be towed over very firm soil by the drawbar and the harvesting mechanism
will be driven by the PTO.
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The machine has the following performance characteristics:
Specific draught  = 8 kN/m of width
Specific PTO power = 3.2 kW/m of width
Operating speed not more than = 3 km/hr (approx.)

Assume the following for the tractor:
Traction efficiency = 70 %
Transmission efficiency to wheels   = 90 %
Transmission efficiency to PTO  = 90 %
Wheel slip not more than = 15 %

Using the graphs given in Chapter 3 and considering both power and draught  requirements, estimate the maximum
width of harvester that can be operated and the fuel consumption.

Answers: 2.25 m, 8 kg/hr

Problem 8.8

(a)  Show that the slope, θ on which the Farmland tractor will just roll forwards is given by:

tan θ =  x r  ρr +  xf ρf 

x +  ( r  +  y3)(ρr +  ρf)

Hence determine the slope for the tractor on:

(a) concrete
(b) loose sand

(b) Repeat for the tractor rolling rearwards

Problem 8.9

By taking appropriate measurements of a small motor bike investigate its capacity to operate a small trailer. Give
careful consideration to instability and safety issues.

Problem 8.10

Apply the principles developed for the two-wheeled tractor in Section 6.4.4 to the design of a trailer of the type
shown in Figure 6.1(b) for use with such a tractor.

- x – x – x -
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