# CONTROLO DE MATOS COM MEIOS MECÂNICOS E QUÍMICOS

### F. Santos - Prof. da UTAD

# Instituições participantes:

Universidade de Trás-os-Montes e Alto Douro; Instituto Superior de Agronomia; Instituto de Ciências Biomédicas Abel Salazar; Escola Superior Agrária de Bragança.

# **Projecto Praxis XXI:**

"Controlo e Maneio de Vegetação em Áreas Florestais".

| Objectivos do trabalho:                                                             |
|-------------------------------------------------------------------------------------|
| - Utilização de meios mecânicos e químicos para controlo de matos;                  |
| - Análise da resposta da vegetação aos diferentes meios utilizados no seu controlo; |
| - Comparação dos rendimentos em trabalho das diferentes opções utilizadas;          |
| - Comparação dos custos das várias operações de controlo utilizadas.                |
|                                                                                     |
|                                                                                     |

# Material utilizado no trabalho:

- Motogadanheira com barra de corte de 0.87 m;
- Motorroçadora com disco de facas;
- Corta matos de 1.30 m accionado por tractor de rastos;
- Pulverizador de jacto projectado de pressão contínua;
- Pulverizador centrífugo accionado por pilhas.

# Material utilizado no trabalho:

Fotografias dos equipamentos mecânicos de corte







Fotografias dos equipamentos de pulverização





## Metodologia utilizada:

### - Motogadanheira:

- determinação da velocidade de deslocamento, segundo as curvas de nível;
- determinação do tempo gasto nas cabeceiras.

### - Motorroçadora:

- marcação e caracterização de talhões de 5 x 3 m;
- determinação do tempo gasto no corte dos talhões.

#### - Corta matos:

- marcação e caracterização de talhões de 20 x 20 m;
- determinação da velocidade de deslocamento;
- determinação do tempo gasto nas cabeceiras.

## - Pulverizador de jacto projectado:

- marcação e caracterização de talhões de 5 x 3 m;
- determinação do tempo gasto na pulverização dos talhões.

## - Pulverizador centrífugo:

- marcação e caracterização de talhões de 5 x 3 m;
- determinação do tempo gasto na pulverização dos talhões.

#### Resultados dos ensaios:

### - Motogadanheira:

- velocidade de deslocamento 0.20 m/s(0.72 km/h) 0.26 m/s(0.94 km/h);
- tempo médio nas cabeceiras 10 s;
- rendimento, para 60 % de Ec, 20 27 h/ha (3 000 4 000 m²/dia).

### - Motorroçadora;

- tempo gasto no corte dos talhões 130 170 s;
- rendimento, para 40 % de Ec, 60 80 h/ha (1 000 1 300 m²/dia).

## - Corta matos de 1.30 m accionado por tractor de rastos;

- velocidade de deslocamento 0.44 m/s(1.6 km/h) 0.63 m/s(2.3 km/h);
- tempo médio nas cabeceiras 47 s;
- rendimento, para 60 % de Ec, 6 8 h/ha (10 000 13 000 m²/dia).

# Resultados dos ensaios (cont.):

## - PJP:

|      | Diluição | Talhão | Déb. | Tempo | Deb.   | Deb.   | Deb.  | Deb.   | Tp.Ef. | Tp.Ef. | Vel.   |
|------|----------|--------|------|-------|--------|--------|-------|--------|--------|--------|--------|
| Bico | (%)      | (m2)   | (ml) | (s)   | (ml/s) | (l/mn) | (l/h) | (l/ha) | (ha/h) | (h/ha) | (km/h) |
| c/   | 50%      | 9      | 700  | 30.0  | 23.3   | 1.4    | 84.0  | 777.8  | 0.11   | 9.3    | 1.4    |
| c/   | 50%      | 9      | 362  | 15.5  | 23.4   | 1.4    | 84.1  | 402.2  | 0.21   | 4.8    | 2.8    |
| c/   | 50%      | 9      | 490  | 21.0  | 23.3   | 1.4    | 84.0  | 544.4  | 0.15   | 6.5    | 2.1    |

## - **P**C;

|      | Diluisão                      | Tallaãa   | Dák       | Tamana | Dak    | Dah    | Dah   | Dah        | Dak    | Deat   | Т., Г. | Т. Г.  | \/al   |
|------|-------------------------------|-----------|-----------|--------|--------|--------|-------|------------|--------|--------|--------|--------|--------|
|      | Diluição                      | Talhão    | Déb.      | Tempo  | Deb.   | Deb.   | Deb.  | Deb.       | Deb.   | Pest.  | Tp.Ef. | Tp.Ef. | Vel.   |
| Bico | (%)                           | (m2)      | (ml)      | (s)    | (ml/s) | (l/mn) | (l/h) | (I)/talhão | (l/ha) | (l/ha) | (h/ha) | (ha/h) | (km/h) |
| s/   | 0                             | 9         | 34        | 120    | 0.28   | 0.02   | 1.01  | 0.03       | 37.33  | 37.33  | 37.0   | 0.03   | 0.26   |
| c/   | 50                            | 9         | 52        | 60     | 0.86   | 0.05   | 3.10  | 0.05       | 57.33  | 28.67  | 18.5   | 0.05   | 0.51   |
| s/   | 0                             | 9         | 67        | 240    | 0.28   | 0.02   | 1.01  | 0.07       | 74.67  | 74.67  | 74.1   | 0.01   | 0.13   |
| c/   | 50                            | 9         | 26        | 30     | 0.86   | 0.05   | 3.10  | 0.03       | 28.67  | 14.33  | 9.3    | 0.11   | 1.03   |
|      |                               |           |           |        |        |        |       |            |        |        |        |        |        |
|      | Simulaçã                      | ão 1 - 0% | 6 de dilι | uição  |        |        |       |            |        |        |        |        |        |
| s/   | 0                             | 9         | 28        | 100    | 0.28   | 0.02   | 1.01  | 0.03       | 31.11  | 31.11  | 30.9   | 0.03   | 0.31   |
| s/   | 0                             | 9         | 22        | 80     | 0.28   | 0.02   | 1.01  | 0.02       | 24.89  | 24.89  | 24.7   | 0.04   | 0.39   |
| s/   | 0                             | 9         | 17        | 60     | 0.28   | 0.02   | 1.01  | 0.02       | 18.67  | 18.67  | 18.5   | 0.05   | 0.51   |
| s/   | 0                             | 9         | 11        | 40     | 0.28   | 0.02   | 1.01  | 0.01       | 12.44  | 12.44  | 12.3   | 0.08   | 0.77   |
| s/   | 0                             | 9         | 6         | 20     | 0.28   | 0.02   | 1.01  | 0.01       | 6.22   | 6.22   | 6.2    | 0.16   | 1.54   |
| s/   | 0                             | 9         | 3         | 10     | 0.28   | 0.02   | 1.01  | 0.00       | 3.11   | 3.11   | 3.1    | 0.32   | 3.09   |
|      |                               |           |           |        |        |        |       |            |        |        |        |        |        |
|      | Simulação 2 - 50% de diluição |           |           |        |        |        |       |            |        |        |        |        |        |
| c/   | 50                            | 9         | 22        | 25     | 0.86   | 0.05   | 1.01  | 0.01       | 7.78   | 3.89   | 7.7    | 0.13   | 1.23   |
| c/   | 50                            | 9         | 17        | 20     | 0.86   | 0.05   | 1.01  | 0.01       | 6.22   | 3.11   | 6.2    | 0.16   | 1.54   |
| c/   | 50                            | 9         | 13        | 15     | 0.86   | 0.05   | 1.01  | 0.00       | 4.67   | 2.33   | 4.6    | 0.22   | 2.06   |
| c/   | 50                            | 9         | 9         | 10     | 0.86   | 0.05   | 1.01  | 0.00       | 3.11   | 1.56   | 3.1    | 0.32   | 3.09   |

# Comparação dos custos das várias operações:

|                | L.T. | V.T.   | C.T.C. | E.C. | C.E.C. | Rend.  | Custo  | Custo   | Pest. | Pest.  | Total  |
|----------------|------|--------|--------|------|--------|--------|--------|---------|-------|--------|--------|
|                | (m)  | (Km/h) | (ha/h) | (%)  | (ha/h) | (h/ha) | (\$/h) | (\$/ha) | (L/h) | (L/ha) | (\$)   |
| Motogadanheira | 0.87 | 0.8    | 0.07   | 60   | 0.04   | 23.08  | 1500   | 34621   |       |        | 34621  |
| Motorroçadora  | 1.50 | 0.2    | 0.04   | 40   | 0.01   | 69.44  | 1300   | 90278   |       |        | 90278  |
| Corta matos    | 1.30 | 1.7    | 0.22   | 50   | 0.11   | 9.05   | 3000   | 27149   |       |        | 27149  |
| P.J.Projectado | 1.50 | 2.0    | 0.30   | 50   | 0.15   | 6.67   | 1000   | 6667    | 42    | 280    | 510667 |
| P.Centrífugo   | 1.50 | 2.0    | 0.30   | 70   | 0.21   | 4.76   | 1000   | 4762    | 1     | 5      | 13333  |

Para determinação dos custos considerou-se que o fitofármaco custa 1800\$00 o litro:

### Conclusões:

- as motoganheiras adaptadas ao corte de matos é uma solução muito interessante para pequenas áreas mas, em zonas mais acidentadas, torna-se bastante penoso trabalhar, pois não é fácil manter a trajectória desejada e a lubrificação é prejudicada;
- as motorroçadoras são equipamentos de difícil manejo e perigosas, pelo que só devem ser utilizadas para corte de pequenas áreas ou áreas de difícil acesso. O rendimento em trabalho é bastante baixo e a sua qualidade não é a melhor pois, em situações de maior densidade de vegetação, nem sempre é fácil distinguir o material cortado do em pé;
- a utilização de corta matos nas zonas onde é possível, é uma solução com um rendimento em trabalho aceitável, quando comparado com as outras soluções mecânicas, especialmente se pudermos utilizar como elementos de corte as facas;
- a utilização de meios químicos é, sem dúvida, em termos de trabalho, a solução menos penosa e que permite um mais fácil acesso às zonas declivosas. O grande inconveniente destas soluções é deixar o mato no local e impedir o acesso dos animais nos dias seguintes;

## Conclusões (cont):

- comparando as áreas cortadas com as tratadas quimicamente constatou-se que, no ano seguinte, a vegetação apresentava já um desenvolvimento bastante significativo para a primeira opção, mantendose a vegetação acamada e seca nos talhões tratados com os pulverizadores. A aplicação de herbicidas, ao deixar o material no local, permite uma maior protecção do solo, não deteriora a sua estrutura e conserva a sua humidade;
- comparando as áreas cortadas com as tratadas quimicamente constatou-se que, no ano seguinte, a vegetação apresentava já um desenvolvimento bastante significativo para a primeira opção, mantendose a vegetação acamada e seca nos talhões tratados com os pulverizadores;
- a utilização de meios mecânicos, para se obter um controlo aceitável da vegetação, deve ser feita com bastante frequência (de dois três em dois três anos), o que encarece muito esta operação.

Em resumo, pode-se afirmar que os meios mecânicos e químicos e também os biológicos e fogo controlado, independentemente das suas vantagens e inconvenientes, devem ser consideradas como técnicas preventivas contra o aparecimento dos incêndios, devendo, no entanto, a educação das pessoas ser o principal agente de protecção das florestas