MapFilter 2.0 Tutorial

Configuração inicial

O sofware **MapFilter 2.0** processa dados númericos com separador decimal . (ponto). A configuração pode ser feita através do painel de controle:

Painel de controle > Relógio e Região > Alterar Formato de data, hora ou número > Configurações adicionais

Em seguida altere os campos conforme abaixo:

Símbolo decimal: (ponto) Símbolo de agrupamento de dígitos: (vírgula) Separador de listas: (vírgula)

Formato do arquivo de dados

O **MapFilter** processa um único conjunto de dados em um arquivo em formato de texto (.txt ou .csv) por vez. O arquivo de texto deve conter pelo menos *três atributos **numéricos_**: dois atributos contendo a **latitude** e **longitude** e o **atributo** que será submetido à filtragem.

Importante

- A primeira linha do arquivo deve conter um cabeçalho (denominação) de atributos;
- As coordenadas devem estar no Datum WGS 84 ou equivalente fornecido em coordenadas geográficas (graus decimais), que é uma forma comum para o armazenamento de coordenadas em registradores de dados agrícolas ou na forma métrica (UTM);
- As coordenadas precisam ter o cabeçalho nomeados com as iniciais "Lat" e "Long" ou "X" e "Y".

Filtragem dos dados

Iniciar o software

Para iniciar o software **MapFilter 2.0** é só clicar no Menu Iniciar do Windows. Em seguida ir na pasta **LAP USP** e clicar em **MapFilter**.

Interface inicial

Selecionar arquivo

Neste tutorial iremos utilizar como exemplo dados de produtividade de milho.

Para abrir o conjunto de dados a ser filtrado clique em **a tela** inicial e selecione o arquivo corn yield.txt.

Identificar o atributo a ser filtrado

Identifique o atributo a ser filtrado:

Os dados do atributo a ser filtrado são plotados no visor e a estatística descritiva é calculada:

Visualização dos dados originais

Filtragem global

O filtro global foi adicionado antes do filtro local para evitar a inflação de variações dos valores do atributo na análise local devido a valores muito baixos ou muito altos. No filtro global, a mediana dos valores do atributo em análise é usada para calcular os limites de corte superior (Eq. 1) e inferior (Eq. 2): Limite Superior = mediana + mediana x v Equação 1

```
Limite Inferior = mediana - mediana x v Equação 2
```

O valor de v deve ser informado pelo usuário no campo Variation of limit (%)

No nosso exemplo iremos utilizar v = 35

Para realizar o filtragem global clique no ícone

Após a filtragem global o **MapFilter** plota e recalcula a estatística descritiva dos dados remanescentes da filtragem. Neste exemplo a filtragem global eliminou todos os dados com valores de produtividade acima de 7.53 e abaixo de 3.63.

Visualização dos dados após a filtragem global

Filtragem local

O filtro local foi dividido em duas etapas: filtro local anisotrópico e isotrópico.

O *filtro anisotrópico* detecta todos os pontos localizados em uma faixa de *raio (R)* em torno de um ponto xi em uma *única direção*. O ponto xi é comparado com k vizinhos à frente e k vizinhos anteriores. O k é o número de vizinhos cuja distância euclidiana é menor ou igual ao R (linha azul na Figura). A mediana desses k vizinhos é calculada e a Eq. 1 e Eq. 2 são aplicados ao ponto xi. Se o valor do ponto xi for maior ou menor dos limites superior e inferior de corte, ele será considerado um erro local e será excluído do conjunto de dados.

O *filtro isotrópico* detecta todos os k pontos vizinhos localizados em um *R* em torno de um ponto xi em *qualquer direção*. Então, a mediana desses k vizinhos é calculada e as Eq. 1 e 2 são aplicadas ao ponto xi. O filtro exclui o ponto xi com um valor maior ou menor que os limites de corte superior e inferior.

Ponto analisado (xi) O k pontos dentro do raio (R)
Identificação dos pontos vizinhos na filtragem local

O valor do raio R deve ser informado pelo usuário no campo Spatial Dependence (m) e o valor de v deve ser informado pelo usuário no campo Variation of limit (%)

LOCAL FILTERING	
Spacial dependence (m):	100
Variation of limits (%):	5.00

No nosso exemplo iremos utilizar R = 100 e v = 5

Para realizar o filtragem local clique no ícone

Após a filtragem local o **MapFilter** plota e recalcula a estatística descritiva dos dados remanescentes da filtragem.

Visualização dos dados após a filtragem local

Salvar os dados

Os dados que não foram excluídos pelo filtro podem ser salvos em um arquivo tipo texto (.txt ou .csv).

Para salvar os dados clique no ícone

